Propagation and stability of kinks in driven and damped nonlinear klein-gordon chains1 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-03

AUTHORS

M. Büttiker, H. Thomas

ABSTRACT

We consider the propagation of kinks in an elastic chain in a bistable or multistable potential under the action of a driving force [M. Büttiker and H. Thomas,Phys. Rev. A37:235 (1988)]. Each element of the chain is subject to a damping force proportional to its velocity. We show that both the propagation velocity of the kinks as a function of the driving field, and the kink width as a function of propagation velocity, are determined by characteristic functions which depend only on the form of the potential. These functions can be found by considering a single particle moving in the upside-down potential of the chain. The general properties of these functions are studied and illustrated by several examples. The stability of these driven kinks is discussed. Interestingly, we find in addition to the expected discrete localized eigenmodes a two-dimensional continuum of oscillatory modes with a localized envelope. More... »

PAGES

1427-1427

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01044726

DOI

http://dx.doi.org/10.1007/bf01044726

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024947745


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Thomas J. Watson Research Center, 10598, Yorktown Heights, New York", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, 10598, Yorktown Heights, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00fcttiker", 
        "givenName": "M.", 
        "id": "sg:person.01246372247.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246372247.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, 4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Basel, 4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "H.", 
        "id": "sg:person.0711120037.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1989-03", 
    "datePublishedReg": "1989-03-01", 
    "description": "We consider the propagation of kinks in an elastic chain in a bistable or multistable potential under the action of a driving force [M. B\u00fcttiker and H. Thomas,Phys. Rev. A37:235 (1988)]. Each element of the chain is subject to a damping force proportional to its velocity. We show that both the propagation velocity of the kinks as a function of the driving field, and the kink width as a function of propagation velocity, are determined by characteristic functions which depend only on the form of the potential. These functions can be found by considering a single particle moving in the upside-down potential of the chain. The general properties of these functions are studied and illustrated by several examples. The stability of these driven kinks is discussed. Interestingly, we find in addition to the expected discrete localized eigenmodes a two-dimensional continuum of oscillatory modes with a localized envelope.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01044726", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "keywords": [
      "propagation of kinks", 
      "stability of kinks", 
      "propagation velocity", 
      "two-dimensional continuum", 
      "multistable potential", 
      "kink width", 
      "localized envelopes", 
      "characteristic function", 
      "general properties", 
      "oscillatory modes", 
      "elastic chains", 
      "kinks", 
      "propagation", 
      "velocity", 
      "single particle", 
      "function", 
      "force", 
      "stability", 
      "field", 
      "chain", 
      "properties", 
      "width", 
      "continuum", 
      "particles", 
      "mode", 
      "envelope", 
      "form", 
      "potential", 
      "elements", 
      "upside", 
      "addition", 
      "action", 
      "example"
    ], 
    "name": "Propagation and stability of kinks in driven and damped nonlinear klein-gordon chains1", 
    "pagination": "1427-1427", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024947745"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01044726"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01044726", 
      "https://app.dimensions.ai/details/publication/pub.1024947745"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_209.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01044726"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01044726'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01044726'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01044726'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01044726'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      20 PREDICATES      58 URIs      50 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01044726 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N94a9c63dd71a4b78a4ad5480d9f8e152
4 schema:datePublished 1989-03
5 schema:datePublishedReg 1989-03-01
6 schema:description We consider the propagation of kinks in an elastic chain in a bistable or multistable potential under the action of a driving force [M. Büttiker and H. Thomas,Phys. Rev. A37:235 (1988)]. Each element of the chain is subject to a damping force proportional to its velocity. We show that both the propagation velocity of the kinks as a function of the driving field, and the kink width as a function of propagation velocity, are determined by characteristic functions which depend only on the form of the potential. These functions can be found by considering a single particle moving in the upside-down potential of the chain. The general properties of these functions are studied and illustrated by several examples. The stability of these driven kinks is discussed. Interestingly, we find in addition to the expected discrete localized eigenmodes a two-dimensional continuum of oscillatory modes with a localized envelope.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N597bc71c5a5d49c2ae84ac5b13505472
10 N8dab6b0ceb794326a4c0857e26fc0da3
11 sg:journal.1040979
12 schema:keywords action
13 addition
14 chain
15 characteristic function
16 continuum
17 elastic chains
18 elements
19 envelope
20 example
21 field
22 force
23 form
24 function
25 general properties
26 kink width
27 kinks
28 localized envelopes
29 mode
30 multistable potential
31 oscillatory modes
32 particles
33 potential
34 propagation
35 propagation of kinks
36 propagation velocity
37 properties
38 single particle
39 stability
40 stability of kinks
41 two-dimensional continuum
42 upside
43 velocity
44 width
45 schema:name Propagation and stability of kinks in driven and damped nonlinear klein-gordon chains1
46 schema:pagination 1427-1427
47 schema:productId N4fc222a1d6b44e6088ad398ff1c33872
48 Nc2591aa152f249b68eb954d0dc3451ee
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024947745
50 https://doi.org/10.1007/bf01044726
51 schema:sdDatePublished 2022-10-01T06:28
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N1f02c0a4c33e4a01a4d82a3f8c2dffd2
54 schema:url https://doi.org/10.1007/bf01044726
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N1f02c0a4c33e4a01a4d82a3f8c2dffd2 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N4fc222a1d6b44e6088ad398ff1c33872 schema:name dimensions_id
61 schema:value pub.1024947745
62 rdf:type schema:PropertyValue
63 N597bc71c5a5d49c2ae84ac5b13505472 schema:volumeNumber 54
64 rdf:type schema:PublicationVolume
65 N8dab6b0ceb794326a4c0857e26fc0da3 schema:issueNumber 5-6
66 rdf:type schema:PublicationIssue
67 N8ddebe2b5f5d41c3b05dde1f5bf73557 rdf:first sg:person.0711120037.13
68 rdf:rest rdf:nil
69 N94a9c63dd71a4b78a4ad5480d9f8e152 rdf:first sg:person.01246372247.07
70 rdf:rest N8ddebe2b5f5d41c3b05dde1f5bf73557
71 Nc2591aa152f249b68eb954d0dc3451ee schema:name doi
72 schema:value 10.1007/bf01044726
73 rdf:type schema:PropertyValue
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
78 schema:name Physical Sciences
79 rdf:type schema:DefinedTerm
80 sg:journal.1040979 schema:issn 0022-4715
81 1572-9613
82 schema:name Journal of Statistical Physics
83 schema:publisher Springer Nature
84 rdf:type schema:Periodical
85 sg:person.01246372247.07 schema:affiliation grid-institutes:grid.481554.9
86 schema:familyName Büttiker
87 schema:givenName M.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246372247.07
89 rdf:type schema:Person
90 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
91 schema:familyName Thomas
92 schema:givenName H.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
94 rdf:type schema:Person
95 grid-institutes:grid.481554.9 schema:alternateName IBM Thomas J. Watson Research Center, 10598, Yorktown Heights, New York
96 schema:name IBM Thomas J. Watson Research Center, 10598, Yorktown Heights, New York
97 rdf:type schema:Organization
98 grid-institutes:grid.6612.3 schema:alternateName Institut für Physik, Universität Basel, 4056, Basel, Switzerland
99 schema:name Institut für Physik, Universität Basel, 4056, Basel, Switzerland
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...