Nonparametric estimation of spatial distributions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-06

AUTHORS

A. G. Journel

ABSTRACT

The indicator approach, whereby the data are used through their rank order, allows a nonparametric approach to the data bivariate distribution. Such rich structural information allows a nonparametric risk-qualified, estimation of local and global spatial distributions.

PAGES

445-468

References to SciGraph publications

Journal

TITLE

Mathematical Geosciences

ISSUE

3

VOLUME

15

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01031292

DOI

http://dx.doi.org/10.1007/bf01031292

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038647337


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Applied Earth Sciences Department, Stanford University, 94305, Stanford, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Journel", 
        "givenName": "A. G.", 
        "id": "sg:person.013166227535.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166227535.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-010-1470-0_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031348717", 
          "https://doi.org/10.1007/978-94-010-1470-0_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01036070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045156199", 
          "https://doi.org/10.1007/bf01036070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01036070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045156199", 
          "https://doi.org/10.1007/bf01036070"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983-06", 
    "datePublishedReg": "1983-06-01", 
    "description": "The indicator approach, whereby the data are used through their rank order, allows a nonparametric approach to the data bivariate distribution. Such rich structural information allows a nonparametric risk-qualified, estimation of local and global spatial distributions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01031292", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039818", 
        "issn": [
          "1874-8961", 
          "1874-8953"
        ], 
        "name": "Mathematical Geosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Nonparametric estimation of spatial distributions", 
    "pagination": "445-468", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b819209db0f2fb75176d8b5613a178efa66fb0d4bfdccf7ddc3a49800f5eaa69"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01031292"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038647337"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01031292", 
      "https://app.dimensions.ai/details/publication/pub.1038647337"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01031292"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01031292'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01031292'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01031292'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01031292'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01031292 schema:author Nff0f1cb1b26347cf80e20ee6771ffe7f
2 schema:citation sg:pub.10.1007/978-94-010-1470-0_14
3 sg:pub.10.1007/bf01036070
4 schema:datePublished 1983-06
5 schema:datePublishedReg 1983-06-01
6 schema:description The indicator approach, whereby the data are used through their rank order, allows a nonparametric approach to the data bivariate distribution. Such rich structural information allows a nonparametric risk-qualified, estimation of local and global spatial distributions.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nb7cfb2a131c34c4a82226fe055042bb9
11 Nd2b14cd3add240b7a06ff7d2deb61a53
12 sg:journal.1039818
13 schema:name Nonparametric estimation of spatial distributions
14 schema:pagination 445-468
15 schema:productId N66381c9fc53e49daadec7a926c2c8c8d
16 N92e82d2e2df745f28f256ab66dc8e829
17 Nc50225d0a8324af5bc5b82d9b7ee35a7
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038647337
19 https://doi.org/10.1007/bf01031292
20 schema:sdDatePublished 2019-04-11T13:28
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nf87332e6c9ea4471a472aa9a61f1a6a8
23 schema:url http://link.springer.com/10.1007/BF01031292
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N66381c9fc53e49daadec7a926c2c8c8d schema:name doi
28 schema:value 10.1007/bf01031292
29 rdf:type schema:PropertyValue
30 N92e82d2e2df745f28f256ab66dc8e829 schema:name readcube_id
31 schema:value b819209db0f2fb75176d8b5613a178efa66fb0d4bfdccf7ddc3a49800f5eaa69
32 rdf:type schema:PropertyValue
33 Nb7cfb2a131c34c4a82226fe055042bb9 schema:issueNumber 3
34 rdf:type schema:PublicationIssue
35 Nc50225d0a8324af5bc5b82d9b7ee35a7 schema:name dimensions_id
36 schema:value pub.1038647337
37 rdf:type schema:PropertyValue
38 Nd2b14cd3add240b7a06ff7d2deb61a53 schema:volumeNumber 15
39 rdf:type schema:PublicationVolume
40 Nf87332e6c9ea4471a472aa9a61f1a6a8 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nff0f1cb1b26347cf80e20ee6771ffe7f rdf:first sg:person.013166227535.29
43 rdf:rest rdf:nil
44 sg:journal.1039818 schema:issn 1874-8953
45 1874-8961
46 schema:name Mathematical Geosciences
47 rdf:type schema:Periodical
48 sg:person.013166227535.29 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
49 schema:familyName Journel
50 schema:givenName A. G.
51 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166227535.29
52 rdf:type schema:Person
53 sg:pub.10.1007/978-94-010-1470-0_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031348717
54 https://doi.org/10.1007/978-94-010-1470-0_14
55 rdf:type schema:CreativeWork
56 sg:pub.10.1007/bf01036070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045156199
57 https://doi.org/10.1007/bf01036070
58 rdf:type schema:CreativeWork
59 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
60 schema:name Applied Earth Sciences Department, Stanford University, 94305, Stanford, California, USA
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...