Fluid dynamic limits of kinetic equations. I. Formal derivations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-04

AUTHORS

Claude Bardos, François Golse, David Levermore

ABSTRACT

The connection between kinetic theory and the macroscopic equations of fluid dynamics is described. In particular, our results concerning the incompressible Navier-Stokes equations are based on a formal derivation in which limiting moments are carefully balanced rather than on a classical expansion such as those of Hilbert or Chapman-Enskog. The moment formalism shows that the limit leading to the incompressible Navier-Stokes equations, like that leading to the compressible Euler equations, is a natural one in kinetic theory and is contrasted with the systematics leading to the compressible Navier-Stokes equations. Some indications of the validity of these limits are given. More specifically, the connection between the DiPerna-Lions renormalized solution of the classical Boltzmann equation and the Leray solution of the Navier-Stokes equations is discussed. More... »

PAGES

323-344

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01026608

DOI

http://dx.doi.org/10.1007/bf01026608

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034122195


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "D\u00e9partement de Math\u00e9matiques, Universit\u00e9 Paris VII, 755251, Paris C\u00e9dex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bardos", 
        "givenName": "Claude", 
        "id": "sg:person.014224365351.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224365351.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "D\u00e9partement de Math\u00e9matiques, Universit\u00e9 Paris VII, 755251, Paris C\u00e9dex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golse", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.015753012636.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015753012636.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Departement of Mathematics, University of Arizona, 85721, Tucson, Arizona"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levermore", 
        "givenName": "David", 
        "id": "sg:person.014173467443.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014173467443.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cpa.3160420810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007127176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160420810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007127176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00411458708204658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018326803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(88)90051-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022007736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01982349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024608912", 
          "https://doi.org/10.1007/bf01982349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01982349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024608912", 
          "https://doi.org/10.1007/bf01982349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924697", 
          "https://doi.org/10.1007/bf01609490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924697", 
          "https://doi.org/10.1007/bf01609490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02547354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026181143", 
          "https://doi.org/10.1007/bf02547354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027192017", 
          "https://doi.org/10.1007/bf01210741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027192017", 
          "https://doi.org/10.1007/bf01210741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160330506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034241907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160330506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034241907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676692"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-04", 
    "datePublishedReg": "1991-04-01", 
    "description": "The connection between kinetic theory and the macroscopic equations of fluid dynamics is described. In particular, our results concerning the incompressible Navier-Stokes equations are based on a formal derivation in which limiting moments are carefully balanced rather than on a classical expansion such as those of Hilbert or Chapman-Enskog. The moment formalism shows that the limit leading to the incompressible Navier-Stokes equations, like that leading to the compressible Euler equations, is a natural one in kinetic theory and is contrasted with the systematics leading to the compressible Navier-Stokes equations. Some indications of the validity of these limits are given. More specifically, the connection between the DiPerna-Lions renormalized solution of the classical Boltzmann equation and the Leray solution of the Navier-Stokes equations is discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01026608", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "name": "Fluid dynamic limits of kinetic equations. I. Formal derivations", 
    "pagination": "323-344", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a28c2d6954dd8cb0e8e3043319b66ff74770bcbacd962a31740bc9a7aa9bca6c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01026608"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034122195"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01026608", 
      "https://app.dimensions.ai/details/publication/pub.1034122195"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01026608"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01026608'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01026608'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01026608'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01026608'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01026608 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2368a144a477442d94d6cfc69b4caf26
4 schema:citation sg:pub.10.1007/bf01210741
5 sg:pub.10.1007/bf01609490
6 sg:pub.10.1007/bf01982349
7 sg:pub.10.1007/bf02547354
8 https://doi.org/10.1002/cpa.3160330506
9 https://doi.org/10.1002/cpa.3160420810
10 https://doi.org/10.1016/0022-1236(88)90051-1
11 https://doi.org/10.1080/00411458708204658
12 https://doi.org/10.2307/1971423
13 schema:datePublished 1991-04
14 schema:datePublishedReg 1991-04-01
15 schema:description The connection between kinetic theory and the macroscopic equations of fluid dynamics is described. In particular, our results concerning the incompressible Navier-Stokes equations are based on a formal derivation in which limiting moments are carefully balanced rather than on a classical expansion such as those of Hilbert or Chapman-Enskog. The moment formalism shows that the limit leading to the incompressible Navier-Stokes equations, like that leading to the compressible Euler equations, is a natural one in kinetic theory and is contrasted with the systematics leading to the compressible Navier-Stokes equations. Some indications of the validity of these limits are given. More specifically, the connection between the DiPerna-Lions renormalized solution of the classical Boltzmann equation and the Leray solution of the Navier-Stokes equations is discussed.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N1ca52526fb424e07b9f7d7b8ce9ca525
20 N93249005190b44fe9495344f7d782221
21 sg:journal.1040979
22 schema:name Fluid dynamic limits of kinetic equations. I. Formal derivations
23 schema:pagination 323-344
24 schema:productId N551e61c58c1e471c8bc3848db2d7624d
25 N57129462f73f467692fe39691f80216f
26 Ne03ce71f7f7746eaadca4f18a3bbf4f1
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034122195
28 https://doi.org/10.1007/bf01026608
29 schema:sdDatePublished 2019-04-11T13:27
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N95ef46edff0b47caa0b78e178ddea461
32 schema:url http://link.springer.com/10.1007/BF01026608
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N1ca52526fb424e07b9f7d7b8ce9ca525 schema:issueNumber 1-2
37 rdf:type schema:PublicationIssue
38 N2368a144a477442d94d6cfc69b4caf26 rdf:first sg:person.014224365351.76
39 rdf:rest N86b8816ae3cb4c6e819e1b216ff8e614
40 N4322c16bb2464495985f1adf0dce5f70 rdf:first sg:person.014173467443.78
41 rdf:rest rdf:nil
42 N551e61c58c1e471c8bc3848db2d7624d schema:name doi
43 schema:value 10.1007/bf01026608
44 rdf:type schema:PropertyValue
45 N57129462f73f467692fe39691f80216f schema:name dimensions_id
46 schema:value pub.1034122195
47 rdf:type schema:PropertyValue
48 N86b8816ae3cb4c6e819e1b216ff8e614 rdf:first sg:person.015753012636.03
49 rdf:rest N4322c16bb2464495985f1adf0dce5f70
50 N93249005190b44fe9495344f7d782221 schema:volumeNumber 63
51 rdf:type schema:PublicationVolume
52 N95ef46edff0b47caa0b78e178ddea461 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Ne03ce71f7f7746eaadca4f18a3bbf4f1 schema:name readcube_id
55 schema:value a28c2d6954dd8cb0e8e3043319b66ff74770bcbacd962a31740bc9a7aa9bca6c
56 rdf:type schema:PropertyValue
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
61 schema:name Pure Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1040979 schema:issn 0022-4715
64 1572-9613
65 schema:name Journal of Statistical Physics
66 rdf:type schema:Periodical
67 sg:person.014173467443.78 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
68 schema:familyName Levermore
69 schema:givenName David
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014173467443.78
71 rdf:type schema:Person
72 sg:person.014224365351.76 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
73 schema:familyName Bardos
74 schema:givenName Claude
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224365351.76
76 rdf:type schema:Person
77 sg:person.015753012636.03 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
78 schema:familyName Golse
79 schema:givenName François
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015753012636.03
81 rdf:type schema:Person
82 sg:pub.10.1007/bf01210741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027192017
83 https://doi.org/10.1007/bf01210741
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf01609490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024924697
86 https://doi.org/10.1007/bf01609490
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf01982349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024608912
89 https://doi.org/10.1007/bf01982349
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf02547354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181143
92 https://doi.org/10.1007/bf02547354
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/cpa.3160330506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034241907
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1002/cpa.3160420810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007127176
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0022-1236(88)90051-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022007736
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1080/00411458708204658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018326803
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2307/1971423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676692
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
105 schema:name Departement of Mathematics, University of Arizona, 85721, Tucson, Arizona
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
108 schema:name Département de Mathématiques, Université Paris VII, 755251, Paris Cédex 05, France
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...