Fluid dynamic limits of kinetic equations. I. Formal derivations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-04

AUTHORS

Claude Bardos, François Golse, David Levermore

ABSTRACT

The connection between kinetic theory and the macroscopic equations of fluid dynamics is described. In particular, our results concerning the incompressible Navier-Stokes equations are based on a formal derivation in which limiting moments are carefully balanced rather than on a classical expansion such as those of Hilbert or Chapman-Enskog. The moment formalism shows that the limit leading to the incompressible Navier-Stokes equations, like that leading to the compressible Euler equations, is a natural one in kinetic theory and is contrasted with the systematics leading to the compressible Navier-Stokes equations. Some indications of the validity of these limits are given. More specifically, the connection between the DiPerna-Lions renormalized solution of the classical Boltzmann equation and the Leray solution of the Navier-Stokes equations is discussed. More... »

PAGES

323-344

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01026608

DOI

http://dx.doi.org/10.1007/bf01026608

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034122195


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "D\u00e9partement de Math\u00e9matiques, Universit\u00e9 Paris VII, 755251, Paris C\u00e9dex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bardos", 
        "givenName": "Claude", 
        "id": "sg:person.014224365351.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224365351.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "D\u00e9partement de Math\u00e9matiques, Universit\u00e9 Paris VII, 755251, Paris C\u00e9dex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golse", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.015753012636.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015753012636.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Departement of Mathematics, University of Arizona, 85721, Tucson, Arizona"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levermore", 
        "givenName": "David", 
        "id": "sg:person.014173467443.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014173467443.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cpa.3160420810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007127176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160420810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007127176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00411458708204658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018326803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(88)90051-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022007736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01982349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024608912", 
          "https://doi.org/10.1007/bf01982349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01982349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024608912", 
          "https://doi.org/10.1007/bf01982349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924697", 
          "https://doi.org/10.1007/bf01609490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024924697", 
          "https://doi.org/10.1007/bf01609490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02547354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026181143", 
          "https://doi.org/10.1007/bf02547354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027192017", 
          "https://doi.org/10.1007/bf01210741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027192017", 
          "https://doi.org/10.1007/bf01210741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160330506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034241907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160330506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034241907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676692"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-04", 
    "datePublishedReg": "1991-04-01", 
    "description": "The connection between kinetic theory and the macroscopic equations of fluid dynamics is described. In particular, our results concerning the incompressible Navier-Stokes equations are based on a formal derivation in which limiting moments are carefully balanced rather than on a classical expansion such as those of Hilbert or Chapman-Enskog. The moment formalism shows that the limit leading to the incompressible Navier-Stokes equations, like that leading to the compressible Euler equations, is a natural one in kinetic theory and is contrasted with the systematics leading to the compressible Navier-Stokes equations. Some indications of the validity of these limits are given. More specifically, the connection between the DiPerna-Lions renormalized solution of the classical Boltzmann equation and the Leray solution of the Navier-Stokes equations is discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01026608", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "name": "Fluid dynamic limits of kinetic equations. I. Formal derivations", 
    "pagination": "323-344", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a28c2d6954dd8cb0e8e3043319b66ff74770bcbacd962a31740bc9a7aa9bca6c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01026608"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034122195"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01026608", 
      "https://app.dimensions.ai/details/publication/pub.1034122195"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01026608"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01026608'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01026608'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01026608'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01026608'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01026608 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ncf302edcf8db44559c119557da710805
4 schema:citation sg:pub.10.1007/bf01210741
5 sg:pub.10.1007/bf01609490
6 sg:pub.10.1007/bf01982349
7 sg:pub.10.1007/bf02547354
8 https://doi.org/10.1002/cpa.3160330506
9 https://doi.org/10.1002/cpa.3160420810
10 https://doi.org/10.1016/0022-1236(88)90051-1
11 https://doi.org/10.1080/00411458708204658
12 https://doi.org/10.2307/1971423
13 schema:datePublished 1991-04
14 schema:datePublishedReg 1991-04-01
15 schema:description The connection between kinetic theory and the macroscopic equations of fluid dynamics is described. In particular, our results concerning the incompressible Navier-Stokes equations are based on a formal derivation in which limiting moments are carefully balanced rather than on a classical expansion such as those of Hilbert or Chapman-Enskog. The moment formalism shows that the limit leading to the incompressible Navier-Stokes equations, like that leading to the compressible Euler equations, is a natural one in kinetic theory and is contrasted with the systematics leading to the compressible Navier-Stokes equations. Some indications of the validity of these limits are given. More specifically, the connection between the DiPerna-Lions renormalized solution of the classical Boltzmann equation and the Leray solution of the Navier-Stokes equations is discussed.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N728b95b3af5e4cd7a47ca0abd47bf66e
20 N9e608b0f9f194616ac907614fc89be4c
21 sg:journal.1040979
22 schema:name Fluid dynamic limits of kinetic equations. I. Formal derivations
23 schema:pagination 323-344
24 schema:productId N4a931c54cbff48f5b3fbad12ea1a6d9d
25 Na46029df9aab4a2081b372f8bb4427ac
26 Nf85df5e439ae40ce872fd33f2eeb1086
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034122195
28 https://doi.org/10.1007/bf01026608
29 schema:sdDatePublished 2019-04-11T13:27
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nce27f71c27d14bdcb79186f2004a67a9
32 schema:url http://link.springer.com/10.1007/BF01026608
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N00b8c04bc3d040dc8abced9c5f455a87 rdf:first sg:person.015753012636.03
37 rdf:rest N8dde7749654e4f5bad9067c119cae786
38 N4a931c54cbff48f5b3fbad12ea1a6d9d schema:name dimensions_id
39 schema:value pub.1034122195
40 rdf:type schema:PropertyValue
41 N728b95b3af5e4cd7a47ca0abd47bf66e schema:volumeNumber 63
42 rdf:type schema:PublicationVolume
43 N8dde7749654e4f5bad9067c119cae786 rdf:first sg:person.014173467443.78
44 rdf:rest rdf:nil
45 N9e608b0f9f194616ac907614fc89be4c schema:issueNumber 1-2
46 rdf:type schema:PublicationIssue
47 Na46029df9aab4a2081b372f8bb4427ac schema:name readcube_id
48 schema:value a28c2d6954dd8cb0e8e3043319b66ff74770bcbacd962a31740bc9a7aa9bca6c
49 rdf:type schema:PropertyValue
50 Nce27f71c27d14bdcb79186f2004a67a9 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Ncf302edcf8db44559c119557da710805 rdf:first sg:person.014224365351.76
53 rdf:rest N00b8c04bc3d040dc8abced9c5f455a87
54 Nf85df5e439ae40ce872fd33f2eeb1086 schema:name doi
55 schema:value 10.1007/bf01026608
56 rdf:type schema:PropertyValue
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
61 schema:name Pure Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1040979 schema:issn 0022-4715
64 1572-9613
65 schema:name Journal of Statistical Physics
66 rdf:type schema:Periodical
67 sg:person.014173467443.78 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
68 schema:familyName Levermore
69 schema:givenName David
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014173467443.78
71 rdf:type schema:Person
72 sg:person.014224365351.76 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
73 schema:familyName Bardos
74 schema:givenName Claude
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224365351.76
76 rdf:type schema:Person
77 sg:person.015753012636.03 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
78 schema:familyName Golse
79 schema:givenName François
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015753012636.03
81 rdf:type schema:Person
82 sg:pub.10.1007/bf01210741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027192017
83 https://doi.org/10.1007/bf01210741
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf01609490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024924697
86 https://doi.org/10.1007/bf01609490
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf01982349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024608912
89 https://doi.org/10.1007/bf01982349
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf02547354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181143
92 https://doi.org/10.1007/bf02547354
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/cpa.3160330506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034241907
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1002/cpa.3160420810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007127176
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0022-1236(88)90051-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022007736
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1080/00411458708204658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018326803
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2307/1971423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676692
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
105 schema:name Departement of Mathematics, University of Arizona, 85721, Tucson, Arizona
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
108 schema:name Département de Mathématiques, Université Paris VII, 755251, Paris Cédex 05, France
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...