Convergence of dynamical zeta functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-03

AUTHORS

Erik Aurell

ABSTRACT

I study poles and zeros of zeta functions in one-dimensional maps. Numerical and analytical arguments are given to show that the first pole of one such zeta function is given by the first zero ofanother zeta function: this describes convergence of the calculations of the first zero, which is generally the physically interesting quantity. Some remarks on how these results should generalize to zeta functions of dynamical systems with “pruned” symbolic dynamics and in higher dimensions follow. More... »

PAGES

967-995

References to SciGraph publications

  • 1988-08. Presentation functions, fixed points, and a theory of scaling function dynamics in JOURNAL OF STATISTICAL PHYSICS
  • 1987-03. Some characterizations of strange sets in JOURNAL OF STATISTICAL PHYSICS
  • 1986-02. Meromorphic extensions of generalised zeta functions in INVENTIONES MATHEMATICAE
  • 1988-04. Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors in JOURNAL OF STATISTICAL PHYSICS
  • Journal

    TITLE

    Journal of Statistical Physics

    ISSUE

    5-6

    VOLUME

    58

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01026559

    DOI

    http://dx.doi.org/10.1007/bf01026559

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004805653


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Gothenburg", 
              "id": "https://www.grid.ac/institutes/grid.8761.8", 
              "name": [
                "Institute of Theoretical Physics, Chalmers University of Technology and University of G\u00f6teborg, 41296, G\u00f6teborg, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aurell", 
            "givenName": "Erik", 
            "id": "sg:person.01104576776.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0167-2789(83)90298-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012357218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(83)90298-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012357218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01015324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012649108", 
              "https://doi.org/10.1007/bf01015324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01388795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018897026", 
              "https://doi.org/10.1007/bf01388795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01019716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029401118", 
              "https://doi.org/10.1007/bf01019716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.81.4.1276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030345261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01011148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031640884", 
              "https://doi.org/10.1007/bf01011148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01011148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031640884", 
              "https://doi.org/10.1007/bf01011148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1665596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057743676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.456017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058034029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.37.1711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060477144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.37.1711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060477144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.38.1503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060477810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.38.1503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060477810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.2729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060798035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.2729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060798035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2373370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069899937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214440727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459584"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1990-03", 
        "datePublishedReg": "1990-03-01", 
        "description": "I study poles and zeros of zeta functions in one-dimensional maps. Numerical and analytical arguments are given to show that the first pole of one such zeta function is given by the first zero ofanother zeta function: this describes convergence of the calculations of the first zero, which is generally the physically interesting quantity. Some remarks on how these results should generalize to zeta functions of dynamical systems with \u201cpruned\u201d symbolic dynamics and in higher dimensions follow.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01026559", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5-6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "58"
          }
        ], 
        "name": "Convergence of dynamical zeta functions", 
        "pagination": "967-995", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "16e5ec3afb497ac873f9099ee99e6c628abca5b06c9703abb01ac3b3621d31cf"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01026559"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004805653"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01026559", 
          "https://app.dimensions.ai/details/publication/pub.1004805653"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000494.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01026559"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01026559'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01026559'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01026559'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01026559'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01026559 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nabf4e54c5b564d758345b72ab2beb927
    4 schema:citation sg:pub.10.1007/bf01011148
    5 sg:pub.10.1007/bf01015324
    6 sg:pub.10.1007/bf01019716
    7 sg:pub.10.1007/bf01388795
    8 https://doi.org/10.1016/0167-2789(83)90298-1
    9 https://doi.org/10.1063/1.1665596
    10 https://doi.org/10.1063/1.456017
    11 https://doi.org/10.1073/pnas.81.4.1276
    12 https://doi.org/10.1103/physreva.37.1711
    13 https://doi.org/10.1103/physreva.38.1503
    14 https://doi.org/10.1103/physrevlett.61.2729
    15 https://doi.org/10.2307/2373370
    16 https://doi.org/10.4310/jdg/1214440727
    17 schema:datePublished 1990-03
    18 schema:datePublishedReg 1990-03-01
    19 schema:description I study poles and zeros of zeta functions in one-dimensional maps. Numerical and analytical arguments are given to show that the first pole of one such zeta function is given by the first zero ofanother zeta function: this describes convergence of the calculations of the first zero, which is generally the physically interesting quantity. Some remarks on how these results should generalize to zeta functions of dynamical systems with “pruned” symbolic dynamics and in higher dimensions follow.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N023b469e7a0243c99e1ad38854c4cbab
    24 N1d4362b3f4cd44c38679bd3821b17034
    25 sg:journal.1040979
    26 schema:name Convergence of dynamical zeta functions
    27 schema:pagination 967-995
    28 schema:productId N3a610531bf004e6f8b6e89183211ef31
    29 N67bf0fa503244c6a87f4d558e2ba16ac
    30 Nc9360092f0c34fa3adc0f238e4ead278
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004805653
    32 https://doi.org/10.1007/bf01026559
    33 schema:sdDatePublished 2019-04-11T01:03
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N50e0cce0ae9a4b14a7f1394ce7024d7a
    36 schema:url http://link.springer.com/10.1007/BF01026559
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N023b469e7a0243c99e1ad38854c4cbab schema:issueNumber 5-6
    41 rdf:type schema:PublicationIssue
    42 N1d4362b3f4cd44c38679bd3821b17034 schema:volumeNumber 58
    43 rdf:type schema:PublicationVolume
    44 N3a610531bf004e6f8b6e89183211ef31 schema:name dimensions_id
    45 schema:value pub.1004805653
    46 rdf:type schema:PropertyValue
    47 N50e0cce0ae9a4b14a7f1394ce7024d7a schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N67bf0fa503244c6a87f4d558e2ba16ac schema:name doi
    50 schema:value 10.1007/bf01026559
    51 rdf:type schema:PropertyValue
    52 Nabf4e54c5b564d758345b72ab2beb927 rdf:first sg:person.01104576776.49
    53 rdf:rest rdf:nil
    54 Nc9360092f0c34fa3adc0f238e4ead278 schema:name readcube_id
    55 schema:value 16e5ec3afb497ac873f9099ee99e6c628abca5b06c9703abb01ac3b3621d31cf
    56 rdf:type schema:PropertyValue
    57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Mathematical Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Pure Mathematics
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1040979 schema:issn 0022-4715
    64 1572-9613
    65 schema:name Journal of Statistical Physics
    66 rdf:type schema:Periodical
    67 sg:person.01104576776.49 schema:affiliation https://www.grid.ac/institutes/grid.8761.8
    68 schema:familyName Aurell
    69 schema:givenName Erik
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49
    71 rdf:type schema:Person
    72 sg:pub.10.1007/bf01011148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031640884
    73 https://doi.org/10.1007/bf01011148
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/bf01015324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649108
    76 https://doi.org/10.1007/bf01015324
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/bf01019716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029401118
    79 https://doi.org/10.1007/bf01019716
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/bf01388795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018897026
    82 https://doi.org/10.1007/bf01388795
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/0167-2789(83)90298-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012357218
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1063/1.1665596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057743676
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1063/1.456017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058034029
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1073/pnas.81.4.1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030345261
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1103/physreva.37.1711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060477144
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1103/physreva.38.1503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060477810
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1103/physrevlett.61.2729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798035
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.2307/2373370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899937
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.4310/jdg/1214440727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459584
    101 rdf:type schema:CreativeWork
    102 https://www.grid.ac/institutes/grid.8761.8 schema:alternateName University of Gothenburg
    103 schema:name Institute of Theoretical Physics, Chalmers University of Technology and University of Göteborg, 41296, Göteborg, Sweden
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...