Convergence of dynamical zeta functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-03

AUTHORS

Erik Aurell

ABSTRACT

I study poles and zeros of zeta functions in one-dimensional maps. Numerical and analytical arguments are given to show that the first pole of one such zeta function is given by the first zero ofanother zeta function: this describes convergence of the calculations of the first zero, which is generally the physically interesting quantity. Some remarks on how these results should generalize to zeta functions of dynamical systems with “pruned” symbolic dynamics and in higher dimensions follow. More... »

PAGES

967-995

Journal

TITLE

Journal of Statistical Physics

ISSUE

5-6

VOLUME

58

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01026559

DOI

http://dx.doi.org/10.1007/bf01026559

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004805653


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Gothenburg", 
          "id": "https://www.grid.ac/institutes/grid.8761.8", 
          "name": [
            "Institute of Theoretical Physics, Chalmers University of Technology and University of G\u00f6teborg, 41296, G\u00f6teborg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aurell", 
        "givenName": "Erik", 
        "id": "sg:person.01104576776.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-2789(83)90298-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012357218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(83)90298-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012357218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01015324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012649108", 
          "https://doi.org/10.1007/bf01015324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01388795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018897026", 
          "https://doi.org/10.1007/bf01388795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01019716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029401118", 
          "https://doi.org/10.1007/bf01019716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.81.4.1276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030345261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031640884", 
          "https://doi.org/10.1007/bf01011148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031640884", 
          "https://doi.org/10.1007/bf01011148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1665596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057743676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.456017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058034029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.37.1711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060477144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.37.1711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060477144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.38.1503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060477810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.38.1503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060477810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214440727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459584"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-03", 
    "datePublishedReg": "1990-03-01", 
    "description": "I study poles and zeros of zeta functions in one-dimensional maps. Numerical and analytical arguments are given to show that the first pole of one such zeta function is given by the first zero ofanother zeta function: this describes convergence of the calculations of the first zero, which is generally the physically interesting quantity. Some remarks on how these results should generalize to zeta functions of dynamical systems with \u201cpruned\u201d symbolic dynamics and in higher dimensions follow.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01026559", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Convergence of dynamical zeta functions", 
    "pagination": "967-995", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "16e5ec3afb497ac873f9099ee99e6c628abca5b06c9703abb01ac3b3621d31cf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01026559"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004805653"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01026559", 
      "https://app.dimensions.ai/details/publication/pub.1004805653"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01026559"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01026559'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01026559'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01026559'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01026559'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01026559 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4357f3b76a5944028ebd7c466a637e85
4 schema:citation sg:pub.10.1007/bf01011148
5 sg:pub.10.1007/bf01015324
6 sg:pub.10.1007/bf01019716
7 sg:pub.10.1007/bf01388795
8 https://doi.org/10.1016/0167-2789(83)90298-1
9 https://doi.org/10.1063/1.1665596
10 https://doi.org/10.1063/1.456017
11 https://doi.org/10.1073/pnas.81.4.1276
12 https://doi.org/10.1103/physreva.37.1711
13 https://doi.org/10.1103/physreva.38.1503
14 https://doi.org/10.1103/physrevlett.61.2729
15 https://doi.org/10.2307/2373370
16 https://doi.org/10.4310/jdg/1214440727
17 schema:datePublished 1990-03
18 schema:datePublishedReg 1990-03-01
19 schema:description I study poles and zeros of zeta functions in one-dimensional maps. Numerical and analytical arguments are given to show that the first pole of one such zeta function is given by the first zero ofanother zeta function: this describes convergence of the calculations of the first zero, which is generally the physically interesting quantity. Some remarks on how these results should generalize to zeta functions of dynamical systems with “pruned” symbolic dynamics and in higher dimensions follow.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N53df31e3ea044473a79d51087c3c4d39
24 Ne1adfc1ee75d4262b5ee1ccbdf8d3704
25 sg:journal.1040979
26 schema:name Convergence of dynamical zeta functions
27 schema:pagination 967-995
28 schema:productId N8ec6a2d138254d7ba7fbe3799a884b15
29 N92a30c857e3b4552af8cfc17c92be97f
30 N92ba67ebd7294667966dd439d0126f45
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004805653
32 https://doi.org/10.1007/bf01026559
33 schema:sdDatePublished 2019-04-11T01:03
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N26e10fbefa7c4ed1a80c947690784dcf
36 schema:url http://link.springer.com/10.1007/BF01026559
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N26e10fbefa7c4ed1a80c947690784dcf schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N4357f3b76a5944028ebd7c466a637e85 rdf:first sg:person.01104576776.49
43 rdf:rest rdf:nil
44 N53df31e3ea044473a79d51087c3c4d39 schema:issueNumber 5-6
45 rdf:type schema:PublicationIssue
46 N8ec6a2d138254d7ba7fbe3799a884b15 schema:name dimensions_id
47 schema:value pub.1004805653
48 rdf:type schema:PropertyValue
49 N92a30c857e3b4552af8cfc17c92be97f schema:name doi
50 schema:value 10.1007/bf01026559
51 rdf:type schema:PropertyValue
52 N92ba67ebd7294667966dd439d0126f45 schema:name readcube_id
53 schema:value 16e5ec3afb497ac873f9099ee99e6c628abca5b06c9703abb01ac3b3621d31cf
54 rdf:type schema:PropertyValue
55 Ne1adfc1ee75d4262b5ee1ccbdf8d3704 schema:volumeNumber 58
56 rdf:type schema:PublicationVolume
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
61 schema:name Pure Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1040979 schema:issn 0022-4715
64 1572-9613
65 schema:name Journal of Statistical Physics
66 rdf:type schema:Periodical
67 sg:person.01104576776.49 schema:affiliation https://www.grid.ac/institutes/grid.8761.8
68 schema:familyName Aurell
69 schema:givenName Erik
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49
71 rdf:type schema:Person
72 sg:pub.10.1007/bf01011148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031640884
73 https://doi.org/10.1007/bf01011148
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01015324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649108
76 https://doi.org/10.1007/bf01015324
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01019716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029401118
79 https://doi.org/10.1007/bf01019716
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01388795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018897026
82 https://doi.org/10.1007/bf01388795
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0167-2789(83)90298-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012357218
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1063/1.1665596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057743676
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1063/1.456017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058034029
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1073/pnas.81.4.1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030345261
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physreva.37.1711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060477144
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physreva.38.1503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060477810
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevlett.61.2729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798035
97 rdf:type schema:CreativeWork
98 https://doi.org/10.2307/2373370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899937
99 rdf:type schema:CreativeWork
100 https://doi.org/10.4310/jdg/1214440727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459584
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.8761.8 schema:alternateName University of Gothenburg
103 schema:name Institute of Theoretical Physics, Chalmers University of Technology and University of Göteborg, 41296, Göteborg, Sweden
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...