The quasiclassical Langevin equation and its application to the decay of a metastable state and to quantum fluctuations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1990-05

AUTHORS

U. Eckern, W. Lehr, A. Menzel-Dorwarth, F. Pelzer, A. Schmid

ABSTRACT

We report on investigations on the consequences of the quasiclassical Langevin equation. This Langevin equation is an equation of motion of the classical type where, however, the stochastic Langevin force is correlated according to the quantum form of the dissipation-fluctuation theorem such that ultimately its power spectrum increases linearly with frequency. Most extensively, we have studied the decay of a metastable state driven by a stochastic force. For a particular type of potential well (piecewise parabolic), we have derived explicit expressions for the decay rate for an arbitrary power spectrum of the stochastic force. We have found that the quasiclassical Langevin equation leads to decay rates which are physically meaningful only within a very restricted range. We have also studied the influence of quantum fluctuations on a predominantly deterministic motion and we have found that there the predictions of the quasiclassical Langevin equations are correct. More... »

PAGES

885-934

References to SciGraph publications

  • 1982-12. On a quasiclassical Langevin equation in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 1981-09. Diffusion in a bistable potential: The functional integral approach in JOURNAL OF STATISTICAL PHYSICS
  • 1973. Generalpart in QUANTUM STATISTICS IN OPTICS AND SOLID-STATE PHYSICS
  • 1989-06. Path integral solutions for non-Markovian processes in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01025856

    DOI

    http://dx.doi.org/10.1007/bf01025856

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019337302


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, 7500, Karlsruhe, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7892.4", 
              "name": [
                "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, 7500, Karlsruhe, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eckern", 
            "givenName": "U.", 
            "id": "sg:person.012657025101.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, 7500, Karlsruhe, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7892.4", 
              "name": [
                "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, 7500, Karlsruhe, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lehr", 
            "givenName": "W.", 
            "id": "sg:person.015320077371.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015320077371.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, 7500, Karlsruhe, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7892.4", 
              "name": [
                "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, 7500, Karlsruhe, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Menzel-Dorwarth", 
            "givenName": "A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, 7500, Karlsruhe, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7892.4", 
              "name": [
                "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, 7500, Karlsruhe, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pelzer", 
            "givenName": "F.", 
            "id": "sg:person.010146020331.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146020331.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, 7500, Karlsruhe, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7892.4", 
              "name": [
                "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, 7500, Karlsruhe, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmid", 
            "givenName": "A.", 
            "id": "sg:person.016231521611.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016231521611.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01106788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010270590", 
              "https://doi.org/10.1007/bf01106788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00681904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012106879", 
              "https://doi.org/10.1007/bf00681904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01308011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040846877", 
              "https://doi.org/10.1007/bf01308011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0044955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026841257", 
              "https://doi.org/10.1007/bfb0044955"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1990-05", 
        "datePublishedReg": "1990-05-01", 
        "description": "We report on investigations on the consequences of the quasiclassical Langevin equation. This Langevin equation is an equation of motion of the classical type where, however, the stochastic Langevin force is correlated according to the quantum form of the dissipation-fluctuation theorem such that ultimately its power spectrum increases linearly with frequency. Most extensively, we have studied the decay of a metastable state driven by a stochastic force. For a particular type of potential well (piecewise parabolic), we have derived explicit expressions for the decay rate for an arbitrary power spectrum of the stochastic force. We have found that the quasiclassical Langevin equation leads to decay rates which are physically meaningful only within a very restricted range. We have also studied the influence of quantum fluctuations on a predominantly deterministic motion and we have found that there the predictions of the quasiclassical Langevin equations are correct.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01025856", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "59"
          }
        ], 
        "keywords": [
          "Langevin equation", 
          "stochastic forces", 
          "stochastic Langevin force", 
          "dissipation-fluctuation theorem", 
          "arbitrary power spectrum", 
          "equations of motion", 
          "deterministic motion", 
          "Langevin forces", 
          "quantum form", 
          "equations", 
          "explicit expressions", 
          "power spectrum", 
          "quantum fluctuations", 
          "classical type", 
          "decay rate", 
          "metastable states", 
          "theorem", 
          "motion", 
          "potential well", 
          "particular type", 
          "fluctuations", 
          "applications", 
          "prediction", 
          "force", 
          "state", 
          "form", 
          "decay", 
          "types", 
          "spectra", 
          "restricted range", 
          "wells", 
          "consequences", 
          "frequency", 
          "rate", 
          "range", 
          "expression", 
          "investigation", 
          "influence", 
          "quasiclassical Langevin equation"
        ], 
        "name": "The quasiclassical Langevin equation and its application to the decay of a metastable state and to quantum fluctuations", 
        "pagination": "885-934", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019337302"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01025856"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01025856", 
          "https://app.dimensions.ai/details/publication/pub.1019337302"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_238.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01025856"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01025856'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01025856'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01025856'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01025856'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      22 PREDICATES      69 URIs      57 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01025856 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Ne679ce272df94e1e9989adf37ce86f2d
    4 schema:citation sg:pub.10.1007/bf00681904
    5 sg:pub.10.1007/bf01106788
    6 sg:pub.10.1007/bf01308011
    7 sg:pub.10.1007/bfb0044955
    8 schema:datePublished 1990-05
    9 schema:datePublishedReg 1990-05-01
    10 schema:description We report on investigations on the consequences of the quasiclassical Langevin equation. This Langevin equation is an equation of motion of the classical type where, however, the stochastic Langevin force is correlated according to the quantum form of the dissipation-fluctuation theorem such that ultimately its power spectrum increases linearly with frequency. Most extensively, we have studied the decay of a metastable state driven by a stochastic force. For a particular type of potential well (piecewise parabolic), we have derived explicit expressions for the decay rate for an arbitrary power spectrum of the stochastic force. We have found that the quasiclassical Langevin equation leads to decay rates which are physically meaningful only within a very restricted range. We have also studied the influence of quantum fluctuations on a predominantly deterministic motion and we have found that there the predictions of the quasiclassical Langevin equations are correct.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N1734fa93510b4d2eb9b7c3c3b9a0004b
    15 Nd274c63d7e4d4a4190b31990a0002238
    16 sg:journal.1040979
    17 schema:keywords Langevin equation
    18 Langevin forces
    19 applications
    20 arbitrary power spectrum
    21 classical type
    22 consequences
    23 decay
    24 decay rate
    25 deterministic motion
    26 dissipation-fluctuation theorem
    27 equations
    28 equations of motion
    29 explicit expressions
    30 expression
    31 fluctuations
    32 force
    33 form
    34 frequency
    35 influence
    36 investigation
    37 metastable states
    38 motion
    39 particular type
    40 potential well
    41 power spectrum
    42 prediction
    43 quantum fluctuations
    44 quantum form
    45 quasiclassical Langevin equation
    46 range
    47 rate
    48 restricted range
    49 spectra
    50 state
    51 stochastic Langevin force
    52 stochastic forces
    53 theorem
    54 types
    55 wells
    56 schema:name The quasiclassical Langevin equation and its application to the decay of a metastable state and to quantum fluctuations
    57 schema:pagination 885-934
    58 schema:productId N3ffb96dfc79c45678905b52140248b1b
    59 N88bd8f8d2e454aeb9da6a643616af020
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019337302
    61 https://doi.org/10.1007/bf01025856
    62 schema:sdDatePublished 2022-01-01T18:06
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N238cebd5c17f42e49a63719b8ef2ea6e
    65 schema:url https://doi.org/10.1007/bf01025856
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N1195df8cb5eb402cacc6adcc29674edd rdf:first Nd48f60bc39f44da59e200a52fa82a20a
    70 rdf:rest Necea17d6a45c422c9dac91eee60abddf
    71 N1734fa93510b4d2eb9b7c3c3b9a0004b schema:issueNumber 3-4
    72 rdf:type schema:PublicationIssue
    73 N238cebd5c17f42e49a63719b8ef2ea6e schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N309826ad4f29435fa2e31b8792e38694 rdf:first sg:person.015320077371.44
    76 rdf:rest N1195df8cb5eb402cacc6adcc29674edd
    77 N3ffb96dfc79c45678905b52140248b1b schema:name dimensions_id
    78 schema:value pub.1019337302
    79 rdf:type schema:PropertyValue
    80 N88bd8f8d2e454aeb9da6a643616af020 schema:name doi
    81 schema:value 10.1007/bf01025856
    82 rdf:type schema:PropertyValue
    83 Nd274c63d7e4d4a4190b31990a0002238 schema:volumeNumber 59
    84 rdf:type schema:PublicationVolume
    85 Nd48f60bc39f44da59e200a52fa82a20a schema:affiliation grid-institutes:grid.7892.4
    86 schema:familyName Menzel-Dorwarth
    87 schema:givenName A.
    88 rdf:type schema:Person
    89 Ne679ce272df94e1e9989adf37ce86f2d rdf:first sg:person.012657025101.49
    90 rdf:rest N309826ad4f29435fa2e31b8792e38694
    91 Necea17d6a45c422c9dac91eee60abddf rdf:first sg:person.010146020331.25
    92 rdf:rest Nf6fdb52ac8a744d9bc7bd2a112be504a
    93 Nf6fdb52ac8a744d9bc7bd2a112be504a rdf:first sg:person.016231521611.77
    94 rdf:rest rdf:nil
    95 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Mathematical Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Statistics
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1040979 schema:issn 0022-4715
    102 1572-9613
    103 schema:name Journal of Statistical Physics
    104 schema:publisher Springer Nature
    105 rdf:type schema:Periodical
    106 sg:person.010146020331.25 schema:affiliation grid-institutes:grid.7892.4
    107 schema:familyName Pelzer
    108 schema:givenName F.
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146020331.25
    110 rdf:type schema:Person
    111 sg:person.012657025101.49 schema:affiliation grid-institutes:grid.7892.4
    112 schema:familyName Eckern
    113 schema:givenName U.
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49
    115 rdf:type schema:Person
    116 sg:person.015320077371.44 schema:affiliation grid-institutes:grid.7892.4
    117 schema:familyName Lehr
    118 schema:givenName W.
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015320077371.44
    120 rdf:type schema:Person
    121 sg:person.016231521611.77 schema:affiliation grid-institutes:grid.7892.4
    122 schema:familyName Schmid
    123 schema:givenName A.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016231521611.77
    125 rdf:type schema:Person
    126 sg:pub.10.1007/bf00681904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012106879
    127 https://doi.org/10.1007/bf00681904
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf01106788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010270590
    130 https://doi.org/10.1007/bf01106788
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf01308011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040846877
    133 https://doi.org/10.1007/bf01308011
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bfb0044955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026841257
    136 https://doi.org/10.1007/bfb0044955
    137 rdf:type schema:CreativeWork
    138 grid-institutes:grid.7892.4 schema:alternateName Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, 7500, Karlsruhe, Federal Republic of Germany
    139 schema:name Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, 7500, Karlsruhe, Federal Republic of Germany
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...