Polymers on disordered hierarchical lattices: A nonlinear combination of random variables View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-10

AUTHORS

J. Cook, B. Derrida

ABSTRACT

The problem of directed polymers on disordered hierarchical and hypercubic lattices is considered. For the hierarchical lattices the problem can be reduced to the study of the stable laws for combining random variables in a nonlinear way. We present the results of numerical simulations of two hierarchical lattices, finding evidence of a phase transition in one case. For a limiting case we extend the perturbation theory developed by Derrida and Griffiths to nonzero temperature and to higher order and use this approach to calculate thermal and geometrical properties (overlaps) of the model. In this limit we obtain an interpolation formula, allowing one to obtain the noninteger moments of the partition function from the integer moments. We obtain bounds for the transition temperature for hierarchical and hypercubic lattices, and some similarities between the problem on the two different types of lattice are discussed. More... »

PAGES

89-139

References to SciGraph publications

  • 1988-06. Polymers on disordered trees, spin glasses, and traveling waves in JOURNAL OF STATISTICAL PHYSICS
  • 1988-08. Diffusion of directed polymers in a random environment in JOURNAL OF STATISTICAL PHYSICS
  • 1988-03. Liapunov spectra for infinite chains of nonlinear oscillators in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01023636

    DOI

    http://dx.doi.org/10.1007/bf01023636

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041616221


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Edinburgh", 
              "id": "https://www.grid.ac/institutes/grid.4305.2", 
              "name": [
                "Service de Physique Th\u00e9orique de Saclay (Laboratoire de l'Institut de Recherche Fondamentale du Commissariat \u00e0 l'Energie Atomique), F-91191, Gif sur Yvette, France", 
                "Department of Physics, University of Edinburgh, EH9 3JZ, Edinburgh, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cook", 
            "givenName": "J.", 
            "id": "sg:person.011622775421.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622775421.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "L'Institut de physique th\u00e9orique", 
              "id": "https://www.grid.ac/institutes/grid.457338.e", 
              "name": [
                "Service de Physique Th\u00e9orique de Saclay (Laboratoire de l'Institut de Recherche Fondamentale du Commissariat \u00e0 l'Energie Atomique), F-91191, Gif sur Yvette, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Derrida", 
            "givenName": "B.", 
            "id": "sg:person.0766735742.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766735742.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/b978-0-444-85248-9.50005-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003104763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01019144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004235241", 
              "https://doi.org/10.1007/bf01019144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01014886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019494097", 
              "https://doi.org/10.1007/bf01014886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-1573(80)90078-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032633050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-1573(80)90078-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032633050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01019720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034209835", 
              "https://doi.org/10.1007/bf01019720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9601(88)90616-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043618149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9601(88)90616-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043618149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.338687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057945218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.40.1720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060479930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.40.1720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060479930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.24.2613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060529350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.24.2613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060529350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.26.5022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060531554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.26.5022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060531554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.38.5184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060547647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.38.5184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060547647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.50.1946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060788622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.50.1946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060788622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.54.2708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060791663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.54.2708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060791663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.55.2923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060792546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.55.2923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060792546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.55.2924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060792547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.55.2924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060792547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.58.2087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060794973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.58.2087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060794973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.59.2125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.59.2125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060795840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.1139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.1139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.2022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.2022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.62.442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060799061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.62.442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060799061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/8/2/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064231671"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1989-10", 
        "datePublishedReg": "1989-10-01", 
        "description": "The problem of directed polymers on disordered hierarchical and hypercubic lattices is considered. For the hierarchical lattices the problem can be reduced to the study of the stable laws for combining random variables in a nonlinear way. We present the results of numerical simulations of two hierarchical lattices, finding evidence of a phase transition in one case. For a limiting case we extend the perturbation theory developed by Derrida and Griffiths to nonzero temperature and to higher order and use this approach to calculate thermal and geometrical properties (overlaps) of the model. In this limit we obtain an interpolation formula, allowing one to obtain the noninteger moments of the partition function from the integer moments. We obtain bounds for the transition temperature for hierarchical and hypercubic lattices, and some similarities between the problem on the two different types of lattice are discussed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01023636", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "57"
          }
        ], 
        "name": "Polymers on disordered hierarchical lattices: A nonlinear combination of random variables", 
        "pagination": "89-139", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c63eadf2284b74f688d897e21755e29a20db1ccc317918811693424c374e8ae8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01023636"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041616221"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01023636", 
          "https://app.dimensions.ai/details/publication/pub.1041616221"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000496.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01023636"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01023636'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01023636'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01023636'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01023636'


     

    This table displays all metadata directly associated to this object as RDF triples.

    138 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01023636 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N49d0e2cda2ea4bb6bb0530fec0a79928
    4 schema:citation sg:pub.10.1007/bf01014886
    5 sg:pub.10.1007/bf01019144
    6 sg:pub.10.1007/bf01019720
    7 https://doi.org/10.1016/0370-1573(80)90078-2
    8 https://doi.org/10.1016/0375-9601(88)90616-0
    9 https://doi.org/10.1016/b978-0-444-85248-9.50005-4
    10 https://doi.org/10.1063/1.338687
    11 https://doi.org/10.1103/physreva.40.1720
    12 https://doi.org/10.1103/physrevb.24.2613
    13 https://doi.org/10.1103/physrevb.26.5022
    14 https://doi.org/10.1103/physrevb.38.5184
    15 https://doi.org/10.1103/physrevlett.50.1946
    16 https://doi.org/10.1103/physrevlett.54.2708
    17 https://doi.org/10.1103/physrevlett.55.2923
    18 https://doi.org/10.1103/physrevlett.55.2924
    19 https://doi.org/10.1103/physrevlett.58.2087
    20 https://doi.org/10.1103/physrevlett.59.2125
    21 https://doi.org/10.1103/physrevlett.61.1139
    22 https://doi.org/10.1103/physrevlett.61.2022
    23 https://doi.org/10.1103/physrevlett.62.442
    24 https://doi.org/10.1209/0295-5075/8/2/001
    25 schema:datePublished 1989-10
    26 schema:datePublishedReg 1989-10-01
    27 schema:description The problem of directed polymers on disordered hierarchical and hypercubic lattices is considered. For the hierarchical lattices the problem can be reduced to the study of the stable laws for combining random variables in a nonlinear way. We present the results of numerical simulations of two hierarchical lattices, finding evidence of a phase transition in one case. For a limiting case we extend the perturbation theory developed by Derrida and Griffiths to nonzero temperature and to higher order and use this approach to calculate thermal and geometrical properties (overlaps) of the model. In this limit we obtain an interpolation formula, allowing one to obtain the noninteger moments of the partition function from the integer moments. We obtain bounds for the transition temperature for hierarchical and hypercubic lattices, and some similarities between the problem on the two different types of lattice are discussed.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N30bad5725e6d466d968e2e132d72d95f
    32 Nf56a02c5d2bd4a4896c1d3f3394bbbdc
    33 sg:journal.1040979
    34 schema:name Polymers on disordered hierarchical lattices: A nonlinear combination of random variables
    35 schema:pagination 89-139
    36 schema:productId N3d728108250d421884388a053b22b494
    37 N5a37bbae443449f0b46ead99e3731755
    38 N5cf50df29600432685e90ab7dcc603be
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041616221
    40 https://doi.org/10.1007/bf01023636
    41 schema:sdDatePublished 2019-04-10T14:06
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher N63babe92739b4e479f6975410a4c769b
    44 schema:url http://link.springer.com/10.1007/BF01023636
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N30bad5725e6d466d968e2e132d72d95f schema:volumeNumber 57
    49 rdf:type schema:PublicationVolume
    50 N3d728108250d421884388a053b22b494 schema:name doi
    51 schema:value 10.1007/bf01023636
    52 rdf:type schema:PropertyValue
    53 N49d0e2cda2ea4bb6bb0530fec0a79928 rdf:first sg:person.011622775421.55
    54 rdf:rest N5b1006401f4f47c5baf3dca43358f2cc
    55 N5a37bbae443449f0b46ead99e3731755 schema:name dimensions_id
    56 schema:value pub.1041616221
    57 rdf:type schema:PropertyValue
    58 N5b1006401f4f47c5baf3dca43358f2cc rdf:first sg:person.0766735742.49
    59 rdf:rest rdf:nil
    60 N5cf50df29600432685e90ab7dcc603be schema:name readcube_id
    61 schema:value c63eadf2284b74f688d897e21755e29a20db1ccc317918811693424c374e8ae8
    62 rdf:type schema:PropertyValue
    63 N63babe92739b4e479f6975410a4c769b schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Nf56a02c5d2bd4a4896c1d3f3394bbbdc schema:issueNumber 1-2
    66 rdf:type schema:PublicationIssue
    67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Mathematical Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Pure Mathematics
    72 rdf:type schema:DefinedTerm
    73 sg:journal.1040979 schema:issn 0022-4715
    74 1572-9613
    75 schema:name Journal of Statistical Physics
    76 rdf:type schema:Periodical
    77 sg:person.011622775421.55 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
    78 schema:familyName Cook
    79 schema:givenName J.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622775421.55
    81 rdf:type schema:Person
    82 sg:person.0766735742.49 schema:affiliation https://www.grid.ac/institutes/grid.457338.e
    83 schema:familyName Derrida
    84 schema:givenName B.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766735742.49
    86 rdf:type schema:Person
    87 sg:pub.10.1007/bf01014886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019494097
    88 https://doi.org/10.1007/bf01014886
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bf01019144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004235241
    91 https://doi.org/10.1007/bf01019144
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bf01019720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034209835
    94 https://doi.org/10.1007/bf01019720
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1016/0370-1573(80)90078-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032633050
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1016/0375-9601(88)90616-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043618149
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/b978-0-444-85248-9.50005-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003104763
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1063/1.338687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057945218
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1103/physreva.40.1720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060479930
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1103/physrevb.24.2613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060529350
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1103/physrevb.26.5022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060531554
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1103/physrevb.38.5184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060547647
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1103/physrevlett.50.1946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788622
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physrevlett.54.2708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791663
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1103/physrevlett.55.2923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792546
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1103/physrevlett.55.2924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792547
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1103/physrevlett.58.2087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794973
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1103/physrevlett.59.2125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795840
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1103/physrevlett.61.1139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797509
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1103/physrevlett.61.2022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797798
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1103/physrevlett.62.442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799061
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1209/0295-5075/8/2/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064231671
    131 rdf:type schema:CreativeWork
    132 https://www.grid.ac/institutes/grid.4305.2 schema:alternateName University of Edinburgh
    133 schema:name Department of Physics, University of Edinburgh, EH9 3JZ, Edinburgh, UK
    134 Service de Physique Théorique de Saclay (Laboratoire de l'Institut de Recherche Fondamentale du Commissariat à l'Energie Atomique), F-91191, Gif sur Yvette, France
    135 rdf:type schema:Organization
    136 https://www.grid.ac/institutes/grid.457338.e schema:alternateName L'Institut de physique théorique
    137 schema:name Service de Physique Théorique de Saclay (Laboratoire de l'Institut de Recherche Fondamentale du Commissariat à l'Energie Atomique), F-91191, Gif sur Yvette, France
    138 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...