Cellular automaton fluids 1: Basic theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1986-11

AUTHORS

Stephen Wolfram

ABSTRACT

Continuum equations are derived for the large-scale behavior of a class of cellular automaton models for fluids. The cellular automata are discrete analogues of molecular dynamics, in which particles with discrete velocities populate the links of a fixed array of sites. Kinetic equations for microscopic particle distributions are constructed. Hydrodynamic equations are then derived using the Chapman-Enskog expansion. Slightly modified Navier-Stokes equations are obtained in two and three dimensions with certain lattices. Viscosities and other transport coefficients are calculated using the Boltzmann transport equation approximation. Some corrections to the equations of motion for cellular automaton fluids beyond the Navier-Stokes order are given. More... »

PAGES

471-526

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01021083

DOI

http://dx.doi.org/10.1007/bf01021083

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018064274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Oracle (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419799.b", 
          "name": [
            "The Institute for Advanced Study, Princeton, New Jersey", 
            "Thinking Machines Corporation, 245 First Street, 02142, Cambridge, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolfram", 
        "givenName": "Stephen", 
        "id": "sg:person.010673503415.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673503415.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03024384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010409919", 
          "https://doi.org/10.1007/bf03024384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(80)90167-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018553366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(80)90167-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018553366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160320502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024446955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160320502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024446955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/311419a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027835697", 
          "https://doi.org/10.1038/311419a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01010423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032152275", 
          "https://doi.org/10.1007/bf01010423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01018092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034006081", 
          "https://doi.org/10.1007/bf01018092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(81)90092-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040420906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(81)90092-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040420906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1385-7258(81)90016-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049156953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0196-8858(86)90028-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050091236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0013091500004247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051465212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1666083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057744161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1666248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057744321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1711368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057779743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.1520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.1520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/pspum/028.2/0430101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089196216"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-11", 
    "datePublishedReg": "1986-11-01", 
    "description": "Continuum equations are derived for the large-scale behavior of a class of cellular automaton models for fluids. The cellular automata are discrete analogues of molecular dynamics, in which particles with discrete velocities populate the links of a fixed array of sites. Kinetic equations for microscopic particle distributions are constructed. Hydrodynamic equations are then derived using the Chapman-Enskog expansion. Slightly modified Navier-Stokes equations are obtained in two and three dimensions with certain lattices. Viscosities and other transport coefficients are calculated using the Boltzmann transport equation approximation. Some corrections to the equations of motion for cellular automaton fluids beyond the Navier-Stokes order are given.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01021083", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Cellular automaton fluids 1: Basic theory", 
    "pagination": "471-526", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5611e3fd02fc96bc9792560cbe15168d5d515b02e8b3dc3824851246706ea7e0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01021083"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018064274"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01021083", 
      "https://app.dimensions.ai/details/publication/pub.1018064274"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01021083"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01021083'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01021083'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01021083'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01021083'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01021083 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N38da82a5b25b48e699ac21b8c6d7320d
4 schema:citation sg:pub.10.1007/bf01010423
5 sg:pub.10.1007/bf01018092
6 sg:pub.10.1007/bf03024384
7 sg:pub.10.1038/311419a0
8 https://doi.org/10.1002/cpa.3160320502
9 https://doi.org/10.1016/0196-8858(86)90028-x
10 https://doi.org/10.1016/0370-1573(81)90092-2
11 https://doi.org/10.1016/0550-3213(80)90167-4
12 https://doi.org/10.1016/1385-7258(81)90016-0
13 https://doi.org/10.1017/s0013091500004247
14 https://doi.org/10.1063/1.1666083
15 https://doi.org/10.1063/1.1666248
16 https://doi.org/10.1063/1.1711368
17 https://doi.org/10.1090/pspum/028.2/0430101
18 https://doi.org/10.1103/physrevlett.54.1520
19 https://doi.org/10.1103/physrevlett.55.449
20 https://doi.org/10.1103/physrevlett.56.1505
21 schema:datePublished 1986-11
22 schema:datePublishedReg 1986-11-01
23 schema:description Continuum equations are derived for the large-scale behavior of a class of cellular automaton models for fluids. The cellular automata are discrete analogues of molecular dynamics, in which particles with discrete velocities populate the links of a fixed array of sites. Kinetic equations for microscopic particle distributions are constructed. Hydrodynamic equations are then derived using the Chapman-Enskog expansion. Slightly modified Navier-Stokes equations are obtained in two and three dimensions with certain lattices. Viscosities and other transport coefficients are calculated using the Boltzmann transport equation approximation. Some corrections to the equations of motion for cellular automaton fluids beyond the Navier-Stokes order are given.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N17f0a40bd00e4a969f13cc874cfd65a8
28 Na9000614331e46cc832a072b4d95501f
29 sg:journal.1040979
30 schema:name Cellular automaton fluids 1: Basic theory
31 schema:pagination 471-526
32 schema:productId N9e9d2ca65c9841f794a6bb679437125a
33 Nb1acae555102454aba5e38dfa9180634
34 Nb8dc8909b2da40d4a47a4cd501cc517f
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018064274
36 https://doi.org/10.1007/bf01021083
37 schema:sdDatePublished 2019-04-10T19:53
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N7143c75df4ee4340a812fae138ead996
40 schema:url http://link.springer.com/10.1007/BF01021083
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N17f0a40bd00e4a969f13cc874cfd65a8 schema:issueNumber 3-4
45 rdf:type schema:PublicationIssue
46 N38da82a5b25b48e699ac21b8c6d7320d rdf:first sg:person.010673503415.85
47 rdf:rest rdf:nil
48 N7143c75df4ee4340a812fae138ead996 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N9e9d2ca65c9841f794a6bb679437125a schema:name dimensions_id
51 schema:value pub.1018064274
52 rdf:type schema:PropertyValue
53 Na9000614331e46cc832a072b4d95501f schema:volumeNumber 45
54 rdf:type schema:PublicationVolume
55 Nb1acae555102454aba5e38dfa9180634 schema:name readcube_id
56 schema:value 5611e3fd02fc96bc9792560cbe15168d5d515b02e8b3dc3824851246706ea7e0
57 rdf:type schema:PropertyValue
58 Nb8dc8909b2da40d4a47a4cd501cc517f schema:name doi
59 schema:value 10.1007/bf01021083
60 rdf:type schema:PropertyValue
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
65 schema:name Pure Mathematics
66 rdf:type schema:DefinedTerm
67 sg:journal.1040979 schema:issn 0022-4715
68 1572-9613
69 schema:name Journal of Statistical Physics
70 rdf:type schema:Periodical
71 sg:person.010673503415.85 schema:affiliation https://www.grid.ac/institutes/grid.419799.b
72 schema:familyName Wolfram
73 schema:givenName Stephen
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673503415.85
75 rdf:type schema:Person
76 sg:pub.10.1007/bf01010423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032152275
77 https://doi.org/10.1007/bf01010423
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01018092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034006081
80 https://doi.org/10.1007/bf01018092
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf03024384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010409919
83 https://doi.org/10.1007/bf03024384
84 rdf:type schema:CreativeWork
85 sg:pub.10.1038/311419a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027835697
86 https://doi.org/10.1038/311419a0
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1002/cpa.3160320502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024446955
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0196-8858(86)90028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050091236
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0370-1573(81)90092-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040420906
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0550-3213(80)90167-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018553366
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/1385-7258(81)90016-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049156953
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1017/s0013091500004247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051465212
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1063/1.1666083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057744161
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1063/1.1666248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057744321
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.1711368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057779743
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1090/pspum/028.2/0430101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089196216
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physrevlett.54.1520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791267
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physrevlett.55.449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792624
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevlett.56.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792961
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.419799.b schema:alternateName Oracle (United States)
115 schema:name The Institute for Advanced Study, Princeton, New Jersey
116 Thinking Machines Corporation, 245 First Street, 02142, Cambridge, Massachusetts
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...