Monte Carlo studies of percolation phenomena for a simple cubic lattice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1976-11

AUTHORS

Amit Sur, Joel L. Lebowitz, J. Marro, M. H. Kalos, S. Kirkpatrick

ABSTRACT

The site-percolation problem on a simple cubic lattice is studied by the Monte Carlo method. By combining results for periodic lattices of different sizes through the use of finite-size scaling theory we obtain good estimates forpc (0.3115±0.0005),β (0.41±0.01),γ (1.6±0.1), andν(0.8±0.1). These results are consistent with other studies. The shape of the clusters is also studied. The average “surface area” for clusters of sizek is found to be close to its maximal value for the low-concentration region as well as for the critical region. The percentage of particles in clusters of different sizesk is found to have an exponential tail for large values ofk forP pc there is too much scatter in the data to draw firm conclusions about the size distribution. More... »

PAGES

345-353

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01020338

DOI

http://dx.doi.org/10.1007/bf01020338

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037774545


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Belfer Graduate School of Science, Yeshiva University, New York, New York", 
          "id": "http://www.grid.ac/institutes/grid.268433.8", 
          "name": [
            "Belfer Graduate School of Science, Yeshiva University, New York, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sur", 
        "givenName": "Amit", 
        "id": "sg:person.011021512443.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011021512443.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belfer Graduate School of Science, Yeshiva University, New York, New York", 
          "id": "http://www.grid.ac/institutes/grid.268433.8", 
          "name": [
            "Belfer Graduate School of Science, Yeshiva University, New York, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebowitz", 
        "givenName": "Joel L.", 
        "id": "sg:person.015317013331.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317013331.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belfer Graduate School of Science, Yeshiva University, New York, New York", 
          "id": "http://www.grid.ac/institutes/grid.268433.8", 
          "name": [
            "Belfer Graduate School of Science, Yeshiva University, New York, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marro", 
        "givenName": "J.", 
        "id": "sg:person.01172235045.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172235045.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences, New York University, New York, New York", 
          "id": "http://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute of Mathematical Sciences, New York University, New York, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalos", 
        "givenName": "M. H.", 
        "id": "sg:person.013542236540.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013542236540.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM-T. J. Watson Research Center, Yorktown Heights, New York", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM-T. J. Watson Research Center, Yorktown Heights, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirkpatrick", 
        "givenName": "S.", 
        "id": "sg:person.016603011744.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603011744.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/184509a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016161958", 
          "https://doi.org/10.1038/184509a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01060201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015299168", 
          "https://doi.org/10.1007/bf01060201"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1976-11", 
    "datePublishedReg": "1976-11-01", 
    "description": "The site-percolation problem on a simple cubic lattice is studied by the Monte Carlo method. By combining results for periodic lattices of different sizes through the use of finite-size scaling theory we obtain good estimates forpc (0.3115\u00b10.0005),\u03b2 (0.41\u00b10.01),\u03b3 (1.6\u00b10.1), and\u03bd(0.8\u00b10.1). These results are consistent with other studies. The shape of the clusters is also studied. The average \u201csurface area\u201d for clusters of sizek is found to be close to its maximal value for the low-concentration region as well as for the critical region. The percentage of particles in clusters of different sizesk is found to have an exponential tail for large values ofk forP pc there is too much scatter in the data to draw firm conclusions about the size distribution.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01020338", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "finite-size scaling theory", 
      "Monte Carlo method", 
      "site-percolation problem", 
      "simple cubic lattice", 
      "Carlo method", 
      "Monte Carlo study", 
      "Carlo study", 
      "cubic lattice", 
      "exponential tail", 
      "scaling theory", 
      "periodic lattice", 
      "forp", 
      "lattice", 
      "problem", 
      "theory", 
      "sizek", 
      "percolation phenomenon", 
      "clusters", 
      "critical region", 
      "results", 
      "maximal value", 
      "distribution", 
      "percentage of particles", 
      "phenomenon", 
      "tail", 
      "different sizes", 
      "shape", 
      "values", 
      "data", 
      "PC", 
      "size", 
      "scatter", 
      "use", 
      "particles", 
      "size distribution", 
      "region", 
      "study", 
      "area", 
      "conclusion", 
      "percentage", 
      "firm conclusions", 
      "surface area", 
      "method", 
      "good estimates forpc", 
      "estimates forpc", 
      "forpc", 
      "clusters of sizek", 
      "low-concentration region", 
      "different sizesk", 
      "sizesk", 
      "large values ofk forP", 
      "values ofk forP", 
      "ofk forP"
    ], 
    "name": "Monte Carlo studies of percolation phenomena for a simple cubic lattice", 
    "pagination": "345-353", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037774545"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01020338"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01020338", 
      "https://app.dimensions.ai/details/publication/pub.1037774545"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_125.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01020338"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01020338'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01020338'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01020338'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01020338'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      22 PREDICATES      81 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01020338 schema:about anzsrc-for:01
2 anzsrc-for:0105
3 schema:author N6657e5d01382420cadef11a106728fb1
4 schema:citation sg:pub.10.1007/bf01060201
5 sg:pub.10.1038/184509a0
6 schema:datePublished 1976-11
7 schema:datePublishedReg 1976-11-01
8 schema:description The site-percolation problem on a simple cubic lattice is studied by the Monte Carlo method. By combining results for periodic lattices of different sizes through the use of finite-size scaling theory we obtain good estimates forpc (0.3115±0.0005),β (0.41±0.01),γ (1.6±0.1), andν(0.8±0.1). These results are consistent with other studies. The shape of the clusters is also studied. The average “surface area” for clusters of sizek is found to be close to its maximal value for the low-concentration region as well as for the critical region. The percentage of particles in clusters of different sizesk is found to have an exponential tail for large values ofk forP <pc. Forp >pc there is too much scatter in the data to draw firm conclusions about the size distribution.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N097a791f9a2a47da8f500f60eab54ae7
13 N792823b2e4d24f1db8c48c1038df0398
14 sg:journal.1040979
15 schema:keywords Carlo method
16 Carlo study
17 Monte Carlo method
18 Monte Carlo study
19 PC
20 area
21 clusters
22 clusters of sizek
23 conclusion
24 critical region
25 cubic lattice
26 data
27 different sizes
28 different sizesk
29 distribution
30 estimates forpc
31 exponential tail
32 finite-size scaling theory
33 firm conclusions
34 forp
35 forpc
36 good estimates forpc
37 large values ofk forP
38 lattice
39 low-concentration region
40 maximal value
41 method
42 ofk forP
43 particles
44 percentage
45 percentage of particles
46 percolation phenomenon
47 periodic lattice
48 phenomenon
49 problem
50 region
51 results
52 scaling theory
53 scatter
54 shape
55 simple cubic lattice
56 site-percolation problem
57 size
58 size distribution
59 sizek
60 sizesk
61 study
62 surface area
63 tail
64 theory
65 use
66 values
67 values ofk forP
68 schema:name Monte Carlo studies of percolation phenomena for a simple cubic lattice
69 schema:pagination 345-353
70 schema:productId N38aabf7195fc461c9f261aa30ddcfe78
71 Na409b4d0e9fd49f3861d56f97e26800b
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037774545
73 https://doi.org/10.1007/bf01020338
74 schema:sdDatePublished 2022-01-01T18:00
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N1e61b299569144fba1b24ce2b4dba605
77 schema:url https://doi.org/10.1007/bf01020338
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N097a791f9a2a47da8f500f60eab54ae7 schema:issueNumber 5
82 rdf:type schema:PublicationIssue
83 N1e61b299569144fba1b24ce2b4dba605 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N24810637b5ad411182fe4b552d3c59c1 rdf:first sg:person.013542236540.10
86 rdf:rest N6cad2b71599f4f11bd082bda019ef1e5
87 N38aabf7195fc461c9f261aa30ddcfe78 schema:name doi
88 schema:value 10.1007/bf01020338
89 rdf:type schema:PropertyValue
90 N6657e5d01382420cadef11a106728fb1 rdf:first sg:person.011021512443.17
91 rdf:rest Nc5c5631505954de59ae6a819eb2925a4
92 N6cad2b71599f4f11bd082bda019ef1e5 rdf:first sg:person.016603011744.36
93 rdf:rest rdf:nil
94 N792823b2e4d24f1db8c48c1038df0398 schema:volumeNumber 15
95 rdf:type schema:PublicationVolume
96 N833362c5ec6a4517aa9e94e87934cde9 rdf:first sg:person.01172235045.45
97 rdf:rest N24810637b5ad411182fe4b552d3c59c1
98 Na409b4d0e9fd49f3861d56f97e26800b schema:name dimensions_id
99 schema:value pub.1037774545
100 rdf:type schema:PropertyValue
101 Nc5c5631505954de59ae6a819eb2925a4 rdf:first sg:person.015317013331.48
102 rdf:rest N833362c5ec6a4517aa9e94e87934cde9
103 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
104 schema:name Mathematical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
107 schema:name Mathematical Physics
108 rdf:type schema:DefinedTerm
109 sg:journal.1040979 schema:issn 0022-4715
110 1572-9613
111 schema:name Journal of Statistical Physics
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.011021512443.17 schema:affiliation grid-institutes:grid.268433.8
115 schema:familyName Sur
116 schema:givenName Amit
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011021512443.17
118 rdf:type schema:Person
119 sg:person.01172235045.45 schema:affiliation grid-institutes:grid.268433.8
120 schema:familyName Marro
121 schema:givenName J.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172235045.45
123 rdf:type schema:Person
124 sg:person.013542236540.10 schema:affiliation grid-institutes:grid.482020.c
125 schema:familyName Kalos
126 schema:givenName M. H.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013542236540.10
128 rdf:type schema:Person
129 sg:person.015317013331.48 schema:affiliation grid-institutes:grid.268433.8
130 schema:familyName Lebowitz
131 schema:givenName Joel L.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015317013331.48
133 rdf:type schema:Person
134 sg:person.016603011744.36 schema:affiliation grid-institutes:grid.481554.9
135 schema:familyName Kirkpatrick
136 schema:givenName S.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016603011744.36
138 rdf:type schema:Person
139 sg:pub.10.1007/bf01060201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015299168
140 https://doi.org/10.1007/bf01060201
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/184509a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016161958
143 https://doi.org/10.1038/184509a0
144 rdf:type schema:CreativeWork
145 grid-institutes:grid.268433.8 schema:alternateName Belfer Graduate School of Science, Yeshiva University, New York, New York
146 schema:name Belfer Graduate School of Science, Yeshiva University, New York, New York
147 rdf:type schema:Organization
148 grid-institutes:grid.481554.9 schema:alternateName IBM-T. J. Watson Research Center, Yorktown Heights, New York
149 schema:name IBM-T. J. Watson Research Center, Yorktown Heights, New York
150 rdf:type schema:Organization
151 grid-institutes:grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences, New York University, New York, New York
152 schema:name Courant Institute of Mathematical Sciences, New York University, New York, New York
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...