Presentation functions, fixed points, and a theory of scaling function dynamics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1988-08

AUTHORS

Mitchell J. Feigenbaum

ABSTRACT

Presentation functions provide the time-ordered points of the forward dynamics of a system as successive inverse images. They generally determine objects constructed on trees, regular or otherwise, and immediately determine a functional form of the transfer matrix of these systems. Presentation functions for regular binary trees determine the associated forward dynamics to be that of a period doubling fixed point. They are generally parametrized by the trajectory scaling function of the dynamics in a natural way. The requirement that the forward dynamics be smooth with a critical point determines a complete set of equations whose solution is the scaling function. These equations are compatible with a dynamics in the space of scalings which is conjectured, with numerical and intuitive support, to possess its solution as a unique, globally attracting fixed point. It is argued that such dynamics is to be sought as a program for the solution of chaotic dynamics. In the course of the exposition new information pertaining to universal mode locking is presented. More... »

PAGES

527-569

References to SciGraph publications

  • 1987-03. Some characterizations of strange sets in JOURNAL OF STATISTICAL PHYSICS
  • 1980-02. The transition to aperiodic behavior in turbulent systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Journal

    TITLE

    Journal of Statistical Physics

    ISSUE

    3-4

    VOLUME

    52

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01019716

    DOI

    http://dx.doi.org/10.1007/bf01019716

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029401118


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Rockefeller University", 
              "id": "https://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Rockefeller University, New York, N.Y."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feigenbaum", 
            "givenName": "Mitchell J.", 
            "id": "sg:person.012752474345.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012752474345.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01205039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005458979", 
              "https://doi.org/10.1007/bf01205039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01205039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005458979", 
              "https://doi.org/10.1007/bf01205039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(82)90030-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027937344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(82)90030-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027937344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01011148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031640884", 
              "https://doi.org/10.1007/bf01011148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01011148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031640884", 
              "https://doi.org/10.1007/bf01011148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.33.1141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060474178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.33.1141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060474178"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1988-08", 
        "datePublishedReg": "1988-08-01", 
        "description": "Presentation functions provide the time-ordered points of the forward dynamics of a system as successive inverse images. They generally determine objects constructed on trees, regular or otherwise, and immediately determine a functional form of the transfer matrix of these systems. Presentation functions for regular binary trees determine the associated forward dynamics to be that of a period doubling fixed point. They are generally parametrized by the trajectory scaling function of the dynamics in a natural way. The requirement that the forward dynamics be smooth with a critical point determines a complete set of equations whose solution is the scaling function. These equations are compatible with a dynamics in the space of scalings which is conjectured, with numerical and intuitive support, to possess its solution as a unique, globally attracting fixed point. It is argued that such dynamics is to be sought as a program for the solution of chaotic dynamics. In the course of the exposition new information pertaining to universal mode locking is presented.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01019716", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "52"
          }
        ], 
        "name": "Presentation functions, fixed points, and a theory of scaling function dynamics", 
        "pagination": "527-569", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8c0ff350d399fcfb267ec284d0590426c3b54d57e1696a0a5cb0bd55553787f7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01019716"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029401118"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01019716", 
          "https://app.dimensions.ai/details/publication/pub.1029401118"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000495.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01019716"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01019716'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01019716'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01019716'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01019716'


     

    This table displays all metadata directly associated to this object as RDF triples.

    75 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01019716 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3b0529c35fb54bb3b2b61cbde696f0c3
    4 schema:citation sg:pub.10.1007/bf01011148
    5 sg:pub.10.1007/bf01205039
    6 https://doi.org/10.1016/0167-2789(82)90030-6
    7 https://doi.org/10.1103/physreva.33.1141
    8 schema:datePublished 1988-08
    9 schema:datePublishedReg 1988-08-01
    10 schema:description Presentation functions provide the time-ordered points of the forward dynamics of a system as successive inverse images. They generally determine objects constructed on trees, regular or otherwise, and immediately determine a functional form of the transfer matrix of these systems. Presentation functions for regular binary trees determine the associated forward dynamics to be that of a period doubling fixed point. They are generally parametrized by the trajectory scaling function of the dynamics in a natural way. The requirement that the forward dynamics be smooth with a critical point determines a complete set of equations whose solution is the scaling function. These equations are compatible with a dynamics in the space of scalings which is conjectured, with numerical and intuitive support, to possess its solution as a unique, globally attracting fixed point. It is argued that such dynamics is to be sought as a program for the solution of chaotic dynamics. In the course of the exposition new information pertaining to universal mode locking is presented.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf Nc24cf846d3da46768b949cec0e15d939
    15 Ndc92cf230be54ea0b778da181d44c8ac
    16 sg:journal.1040979
    17 schema:name Presentation functions, fixed points, and a theory of scaling function dynamics
    18 schema:pagination 527-569
    19 schema:productId N10e233536fa84681bf8a35251525813e
    20 N43a6af6d8ed94985a3802c4adaa1642e
    21 N5b84baa1215d4d40b726c73e2a98a262
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029401118
    23 https://doi.org/10.1007/bf01019716
    24 schema:sdDatePublished 2019-04-10T23:21
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher Ne754195d957f4d699bb4f73de737aa60
    27 schema:url http://link.springer.com/10.1007/BF01019716
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N10e233536fa84681bf8a35251525813e schema:name doi
    32 schema:value 10.1007/bf01019716
    33 rdf:type schema:PropertyValue
    34 N3b0529c35fb54bb3b2b61cbde696f0c3 rdf:first sg:person.012752474345.31
    35 rdf:rest rdf:nil
    36 N43a6af6d8ed94985a3802c4adaa1642e schema:name dimensions_id
    37 schema:value pub.1029401118
    38 rdf:type schema:PropertyValue
    39 N5b84baa1215d4d40b726c73e2a98a262 schema:name readcube_id
    40 schema:value 8c0ff350d399fcfb267ec284d0590426c3b54d57e1696a0a5cb0bd55553787f7
    41 rdf:type schema:PropertyValue
    42 Nc24cf846d3da46768b949cec0e15d939 schema:volumeNumber 52
    43 rdf:type schema:PublicationVolume
    44 Ndc92cf230be54ea0b778da181d44c8ac schema:issueNumber 3-4
    45 rdf:type schema:PublicationIssue
    46 Ne754195d957f4d699bb4f73de737aa60 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    49 schema:name Mathematical Sciences
    50 rdf:type schema:DefinedTerm
    51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Pure Mathematics
    53 rdf:type schema:DefinedTerm
    54 sg:journal.1040979 schema:issn 0022-4715
    55 1572-9613
    56 schema:name Journal of Statistical Physics
    57 rdf:type schema:Periodical
    58 sg:person.012752474345.31 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
    59 schema:familyName Feigenbaum
    60 schema:givenName Mitchell J.
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012752474345.31
    62 rdf:type schema:Person
    63 sg:pub.10.1007/bf01011148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031640884
    64 https://doi.org/10.1007/bf01011148
    65 rdf:type schema:CreativeWork
    66 sg:pub.10.1007/bf01205039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458979
    67 https://doi.org/10.1007/bf01205039
    68 rdf:type schema:CreativeWork
    69 https://doi.org/10.1016/0167-2789(82)90030-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027937344
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1103/physreva.33.1141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060474178
    72 rdf:type schema:CreativeWork
    73 https://www.grid.ac/institutes/grid.134907.8 schema:alternateName Rockefeller University
    74 schema:name Rockefeller University, New York, N.Y.
    75 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...