Infinite hierarchy of exponents in a two-component random resistor network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-08

AUTHORS

Lucilla de Arcangelis, Antonio Coniglio

ABSTRACT

We have studied the voltage distribution for a two-component random mixture of conductances σa and σb. A scaling theory is developed for the moments of the distribution, which predicts, for small values ofh=σa/σb, an infinite number of crossover exponents, one for each moment, for Euclidean dimensiond >2, and only one crossover exponent ford=2. Monte Carlo results on the square lattice confirm this prediction. More... »

PAGES

935-942

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01019704

DOI

http://dx.doi.org/10.1007/bf01019704

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000367145


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institute for Theoretical Physics, University of Cologne, 5000, K\u00f6ln 41, West Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Arcangelis", 
        "givenName": "Lucilla", 
        "id": "sg:person.01052200217.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052200217.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Napoli, 80125, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coniglio", 
        "givenName": "Antonio", 
        "id": "sg:person.01227217136.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.15.5733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060522597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.15.5733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060522597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.4725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.4725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.4564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.4564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.4656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.4656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.1718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.1718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791330"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-08", 
    "datePublishedReg": "1987-08-01", 
    "description": "We have studied the voltage distribution for a two-component random mixture of conductances \u03c3a and \u03c3b. A scaling theory is developed for the moments of the distribution, which predicts, for small values ofh=\u03c3a/\u03c3b, an infinite number of crossover exponents, one for each moment, for Euclidean dimensiond >2, and only one crossover exponent ford=2. Monte Carlo results on the square lattice confirm this prediction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01019704", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Infinite hierarchy of exponents in a two-component random resistor network", 
    "pagination": "935-942", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "01bf72aef31459ca931fb251b6c5d88f9b6570e1bca273d820b4da508cbf687a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01019704"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000367145"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01019704", 
      "https://app.dimensions.ai/details/publication/pub.1000367145"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01019704"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01019704'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01019704'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01019704'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01019704'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01019704 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1bad08572ce544718a0d50a1698ae053
4 schema:citation https://doi.org/10.1103/physrevb.15.5733
5 https://doi.org/10.1103/physrevb.31.4725
6 https://doi.org/10.1103/physrevb.33.4564
7 https://doi.org/10.1103/physrevb.34.4656
8 https://doi.org/10.1103/physrevlett.54.1718
9 schema:datePublished 1987-08
10 schema:datePublishedReg 1987-08-01
11 schema:description We have studied the voltage distribution for a two-component random mixture of conductances σa and σb. A scaling theory is developed for the moments of the distribution, which predicts, for small values ofh=σa/σb, an infinite number of crossover exponents, one for each moment, for Euclidean dimensiond >2, and only one crossover exponent ford=2. Monte Carlo results on the square lattice confirm this prediction.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N3e8e648f34f64035971b8b155928c1e5
16 N61a99d1e80764440808a53e232ef5468
17 sg:journal.1040979
18 schema:name Infinite hierarchy of exponents in a two-component random resistor network
19 schema:pagination 935-942
20 schema:productId N0eedcd53ec854dfb96259c3f71654f3d
21 N3a27594e9d3a4c4f91be9370ae53ea3a
22 Nccf751a12a70498cbd44c0ffbf690f0b
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000367145
24 https://doi.org/10.1007/bf01019704
25 schema:sdDatePublished 2019-04-10T17:27
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N78818252c973482d9423bccb64744308
28 schema:url http://link.springer.com/10.1007/BF01019704
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N0eedcd53ec854dfb96259c3f71654f3d schema:name doi
33 schema:value 10.1007/bf01019704
34 rdf:type schema:PropertyValue
35 N1bad08572ce544718a0d50a1698ae053 rdf:first sg:person.01052200217.49
36 rdf:rest Nbb126832d52f440995ca47223824cab9
37 N3a27594e9d3a4c4f91be9370ae53ea3a schema:name dimensions_id
38 schema:value pub.1000367145
39 rdf:type schema:PropertyValue
40 N3e8e648f34f64035971b8b155928c1e5 schema:issueNumber 3-4
41 rdf:type schema:PublicationIssue
42 N61a99d1e80764440808a53e232ef5468 schema:volumeNumber 48
43 rdf:type schema:PublicationVolume
44 N78818252c973482d9423bccb64744308 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Nbb126832d52f440995ca47223824cab9 rdf:first sg:person.01227217136.16
47 rdf:rest rdf:nil
48 Nccf751a12a70498cbd44c0ffbf690f0b schema:name readcube_id
49 schema:value 01bf72aef31459ca931fb251b6c5d88f9b6570e1bca273d820b4da508cbf687a
50 rdf:type schema:PropertyValue
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
55 schema:name Pure Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1040979 schema:issn 0022-4715
58 1572-9613
59 schema:name Journal of Statistical Physics
60 rdf:type schema:Periodical
61 sg:person.01052200217.49 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
62 schema:familyName de Arcangelis
63 schema:givenName Lucilla
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052200217.49
65 rdf:type schema:Person
66 sg:person.01227217136.16 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
67 schema:familyName Coniglio
68 schema:givenName Antonio
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16
70 rdf:type schema:Person
71 https://doi.org/10.1103/physrevb.15.5733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060522597
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1103/physrevb.31.4725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537281
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1103/physrevb.33.4564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539753
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1103/physrevb.34.4656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060541112
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1103/physrevlett.54.1718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791330
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.4691.a schema:alternateName University of Naples Federico II
82 schema:name Dipartimento di Fisica, Università di Napoli, 80125, Napoli, Italy
83 rdf:type schema:Organization
84 https://www.grid.ac/institutes/grid.6190.e schema:alternateName University of Cologne
85 schema:name Institute for Theoretical Physics, University of Cologne, 5000, Köln 41, West Germany
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...