Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-08

AUTHORS

Roberto Livi, Marco Pettini, Stefano Ruffo, Angelo Vulpiani

ABSTRACT

The relation between chaotic dynamics of nonlinear Hamiltonian systems and equilibrium statistical mechanics in its canonical ensemble formulation has been investigated for two different nonlinear Hamiltonian systems. We have compared time averages obtained by means of numerical simulations of molecular dynamics type with analytically computed ensemble averages. The numerical simulation of the dynamic counterpart of the canonical ensemble is obtained by considering the behavior of a small part of a given system, described by a microcanonical ensemble, in order to have fluctuations of the energy of the subsystem. The results for the Fermi-Pasta-Ulam model (i.e., a one-dimensional anharmonic solid) show a substantial agreement between time and ensemble averages independent of the degree of stochasticity of the dynamics. On the other hand, a very different behavior is observed for a chain of weakly coupled rotators, where linear exchange effects are absent. In the high-temperature limit (weak coupling) we have a strong disagreement between time and ensemble averages for the specific heat even if the dynamics is chaotic. This behavior is related to the presence of spatially localized chaos, which prevents the complete filling of the accessible phase space of the system. Localized chaos is detected by the distribution of all the characteristic Liapunov exponents. More... »

PAGES

539-559

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01019687

DOI

http://dx.doi.org/10.1007/bf01019687

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012658600


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 degli Studi di Firenze, and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50125, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Livi", 
        "givenName": "Roberto", 
        "id": "sg:person.0772676522.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Osservatorio Astrofisico di Arcetri, and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50125, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pettini", 
        "givenName": "Marco", 
        "id": "sg:person.01176525605.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176525605.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 degli Studi di Firenze, and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50125, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruffo", 
        "givenName": "Stefano", 
        "id": "sg:person.01365701241.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365701241.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Roma I, Italy", 
            "Gruppo Nazionale Struttura della Materia-Centro Interuniversitario di Struttura della Materia, Sezione di Roma, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vulpiani", 
        "givenName": "Angelo", 
        "id": "sg:person.01352261626.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02723540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027238174", 
          "https://doi.org/10.1007/bf02723540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/19/11/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059067990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.19.1741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.19.1741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.2.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.2.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467895"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-08", 
    "datePublishedReg": "1987-08-01", 
    "description": "The relation between chaotic dynamics of nonlinear Hamiltonian systems and equilibrium statistical mechanics in its canonical ensemble formulation has been investigated for two different nonlinear Hamiltonian systems. We have compared time averages obtained by means of numerical simulations of molecular dynamics type with analytically computed ensemble averages. The numerical simulation of the dynamic counterpart of the canonical ensemble is obtained by considering the behavior of a small part of a given system, described by a microcanonical ensemble, in order to have fluctuations of the energy of the subsystem. The results for the Fermi-Pasta-Ulam model (i.e., a one-dimensional anharmonic solid) show a substantial agreement between time and ensemble averages independent of the degree of stochasticity of the dynamics. On the other hand, a very different behavior is observed for a chain of weakly coupled rotators, where linear exchange effects are absent. In the high-temperature limit (weak coupling) we have a strong disagreement between time and ensemble averages for the specific heat even if the dynamics is chaotic. This behavior is related to the presence of spatially localized chaos, which prevents the complete filling of the accessible phase space of the system. Localized chaos is detected by the distribution of all the characteristic Liapunov exponents.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01019687", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics", 
    "pagination": "539-559", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3c4e9923a861c2c0dc8b3f2fbed8cf70ebeaedf77653f888d972e6aac49b2c47"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01019687"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012658600"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01019687", 
      "https://app.dimensions.ai/details/publication/pub.1012658600"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01019687"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01019687'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01019687'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01019687'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01019687'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01019687 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0563f16d15224230ae19e90945ca67c9
4 schema:citation sg:pub.10.1007/bf02723540
5 https://doi.org/10.1088/0305-4470/19/11/012
6 https://doi.org/10.1103/physreva.14.2338
7 https://doi.org/10.1103/physreva.19.1741
8 https://doi.org/10.1103/physreva.2.2013
9 schema:datePublished 1987-08
10 schema:datePublishedReg 1987-08-01
11 schema:description The relation between chaotic dynamics of nonlinear Hamiltonian systems and equilibrium statistical mechanics in its canonical ensemble formulation has been investigated for two different nonlinear Hamiltonian systems. We have compared time averages obtained by means of numerical simulations of molecular dynamics type with analytically computed ensemble averages. The numerical simulation of the dynamic counterpart of the canonical ensemble is obtained by considering the behavior of a small part of a given system, described by a microcanonical ensemble, in order to have fluctuations of the energy of the subsystem. The results for the Fermi-Pasta-Ulam model (i.e., a one-dimensional anharmonic solid) show a substantial agreement between time and ensemble averages independent of the degree of stochasticity of the dynamics. On the other hand, a very different behavior is observed for a chain of weakly coupled rotators, where linear exchange effects are absent. In the high-temperature limit (weak coupling) we have a strong disagreement between time and ensemble averages for the specific heat even if the dynamics is chaotic. This behavior is related to the presence of spatially localized chaos, which prevents the complete filling of the accessible phase space of the system. Localized chaos is detected by the distribution of all the characteristic Liapunov exponents.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N3f786ad065b34d45be77767695dc891a
16 Nd6ced2ac10dc438391fa54ba9a7fe4d9
17 sg:journal.1040979
18 schema:name Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics
19 schema:pagination 539-559
20 schema:productId N0e904b5347364d42b0ee2f0dc99854d2
21 N18246667a64f4424a06670c6ace7e1ea
22 N9e73f93a22ac470fb2eac443afe42d26
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012658600
24 https://doi.org/10.1007/bf01019687
25 schema:sdDatePublished 2019-04-11T01:56
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N7eb5efa6ff184ff387c70840c2e69bf0
28 schema:url http://link.springer.com/10.1007/BF01019687
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N0563f16d15224230ae19e90945ca67c9 rdf:first sg:person.0772676522.84
33 rdf:rest Nf6a7fc4c43f84f45981dc9cd36eb663b
34 N0e904b5347364d42b0ee2f0dc99854d2 schema:name dimensions_id
35 schema:value pub.1012658600
36 rdf:type schema:PropertyValue
37 N18246667a64f4424a06670c6ace7e1ea schema:name doi
38 schema:value 10.1007/bf01019687
39 rdf:type schema:PropertyValue
40 N1ce59bed118c40bdbb0f89d237937b5f rdf:first sg:person.01365701241.87
41 rdf:rest N79bbe3dc2b6d4e9d97540cf0a55f9c11
42 N338918f4b6d74abb92ad004888b41ca2 schema:name Dipartimento di Fisica, Università degli Studi di Firenze, and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50125, Firenze, Italy
43 rdf:type schema:Organization
44 N3f786ad065b34d45be77767695dc891a schema:issueNumber 3-4
45 rdf:type schema:PublicationIssue
46 N79bbe3dc2b6d4e9d97540cf0a55f9c11 rdf:first sg:person.01352261626.07
47 rdf:rest rdf:nil
48 N7eb5efa6ff184ff387c70840c2e69bf0 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N9e73f93a22ac470fb2eac443afe42d26 schema:name readcube_id
51 schema:value 3c4e9923a861c2c0dc8b3f2fbed8cf70ebeaedf77653f888d972e6aac49b2c47
52 rdf:type schema:PropertyValue
53 Nd6ced2ac10dc438391fa54ba9a7fe4d9 schema:volumeNumber 48
54 rdf:type schema:PublicationVolume
55 Nf06408649564426a8ae6c249fdd56e10 schema:name Dipartimento di Fisica, Università degli Studi di Firenze, and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50125, Firenze, Italy
56 rdf:type schema:Organization
57 Nf5f3461894084f76b00b84ae5b759d12 schema:name Osservatorio Astrofisico di Arcetri, and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50125, Firenze, Italy
58 rdf:type schema:Organization
59 Nf6a7fc4c43f84f45981dc9cd36eb663b rdf:first sg:person.01176525605.27
60 rdf:rest N1ce59bed118c40bdbb0f89d237937b5f
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
65 schema:name Pure Mathematics
66 rdf:type schema:DefinedTerm
67 sg:journal.1040979 schema:issn 0022-4715
68 1572-9613
69 schema:name Journal of Statistical Physics
70 rdf:type schema:Periodical
71 sg:person.01176525605.27 schema:affiliation Nf5f3461894084f76b00b84ae5b759d12
72 schema:familyName Pettini
73 schema:givenName Marco
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176525605.27
75 rdf:type schema:Person
76 sg:person.01352261626.07 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
77 schema:familyName Vulpiani
78 schema:givenName Angelo
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07
80 rdf:type schema:Person
81 sg:person.01365701241.87 schema:affiliation N338918f4b6d74abb92ad004888b41ca2
82 schema:familyName Ruffo
83 schema:givenName Stefano
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365701241.87
85 rdf:type schema:Person
86 sg:person.0772676522.84 schema:affiliation Nf06408649564426a8ae6c249fdd56e10
87 schema:familyName Livi
88 schema:givenName Roberto
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84
90 rdf:type schema:Person
91 sg:pub.10.1007/bf02723540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027238174
92 https://doi.org/10.1007/bf02723540
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1088/0305-4470/19/11/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059067990
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physreva.14.2338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466055
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physreva.19.1741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467533
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physreva.2.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467895
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
103 schema:name Dipartimento di Fisica, Università di Roma I, Italy
104 Gruppo Nazionale Struttura della Materia-Centro Interuniversitario di Struttura della Materia, Sezione di Roma, 00185, Rome, Italy
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...