Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-08

AUTHORS

Roberto Livi, Marco Pettini, Stefano Ruffo, Angelo Vulpiani

ABSTRACT

The relation between chaotic dynamics of nonlinear Hamiltonian systems and equilibrium statistical mechanics in its canonical ensemble formulation has been investigated for two different nonlinear Hamiltonian systems. We have compared time averages obtained by means of numerical simulations of molecular dynamics type with analytically computed ensemble averages. The numerical simulation of the dynamic counterpart of the canonical ensemble is obtained by considering the behavior of a small part of a given system, described by a microcanonical ensemble, in order to have fluctuations of the energy of the subsystem. The results for the Fermi-Pasta-Ulam model (i.e., a one-dimensional anharmonic solid) show a substantial agreement between time and ensemble averages independent of the degree of stochasticity of the dynamics. On the other hand, a very different behavior is observed for a chain of weakly coupled rotators, where linear exchange effects are absent. In the high-temperature limit (weak coupling) we have a strong disagreement between time and ensemble averages for the specific heat even if the dynamics is chaotic. This behavior is related to the presence of spatially localized chaos, which prevents the complete filling of the accessible phase space of the system. Localized chaos is detected by the distribution of all the characteristic Liapunov exponents. More... »

PAGES

539-559

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01019687

DOI

http://dx.doi.org/10.1007/bf01019687

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012658600


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 degli Studi di Firenze, and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50125, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Livi", 
        "givenName": "Roberto", 
        "id": "sg:person.0772676522.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Osservatorio Astrofisico di Arcetri, and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50125, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pettini", 
        "givenName": "Marco", 
        "id": "sg:person.01176525605.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176525605.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 degli Studi di Firenze, and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50125, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruffo", 
        "givenName": "Stefano", 
        "id": "sg:person.01365701241.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365701241.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Roma I, Italy", 
            "Gruppo Nazionale Struttura della Materia-Centro Interuniversitario di Struttura della Materia, Sezione di Roma, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vulpiani", 
        "givenName": "Angelo", 
        "id": "sg:person.01352261626.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02723540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027238174", 
          "https://doi.org/10.1007/bf02723540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/19/11/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059067990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.19.1741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.19.1741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.2.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.2.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467895"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-08", 
    "datePublishedReg": "1987-08-01", 
    "description": "The relation between chaotic dynamics of nonlinear Hamiltonian systems and equilibrium statistical mechanics in its canonical ensemble formulation has been investigated for two different nonlinear Hamiltonian systems. We have compared time averages obtained by means of numerical simulations of molecular dynamics type with analytically computed ensemble averages. The numerical simulation of the dynamic counterpart of the canonical ensemble is obtained by considering the behavior of a small part of a given system, described by a microcanonical ensemble, in order to have fluctuations of the energy of the subsystem. The results for the Fermi-Pasta-Ulam model (i.e., a one-dimensional anharmonic solid) show a substantial agreement between time and ensemble averages independent of the degree of stochasticity of the dynamics. On the other hand, a very different behavior is observed for a chain of weakly coupled rotators, where linear exchange effects are absent. In the high-temperature limit (weak coupling) we have a strong disagreement between time and ensemble averages for the specific heat even if the dynamics is chaotic. This behavior is related to the presence of spatially localized chaos, which prevents the complete filling of the accessible phase space of the system. Localized chaos is detected by the distribution of all the characteristic Liapunov exponents.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01019687", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics", 
    "pagination": "539-559", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3c4e9923a861c2c0dc8b3f2fbed8cf70ebeaedf77653f888d972e6aac49b2c47"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01019687"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012658600"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01019687", 
      "https://app.dimensions.ai/details/publication/pub.1012658600"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01019687"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01019687'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01019687'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01019687'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01019687'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01019687 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N898db6815bdf4c5d8d5cba3f7e4e30f7
4 schema:citation sg:pub.10.1007/bf02723540
5 https://doi.org/10.1088/0305-4470/19/11/012
6 https://doi.org/10.1103/physreva.14.2338
7 https://doi.org/10.1103/physreva.19.1741
8 https://doi.org/10.1103/physreva.2.2013
9 schema:datePublished 1987-08
10 schema:datePublishedReg 1987-08-01
11 schema:description The relation between chaotic dynamics of nonlinear Hamiltonian systems and equilibrium statistical mechanics in its canonical ensemble formulation has been investigated for two different nonlinear Hamiltonian systems. We have compared time averages obtained by means of numerical simulations of molecular dynamics type with analytically computed ensemble averages. The numerical simulation of the dynamic counterpart of the canonical ensemble is obtained by considering the behavior of a small part of a given system, described by a microcanonical ensemble, in order to have fluctuations of the energy of the subsystem. The results for the Fermi-Pasta-Ulam model (i.e., a one-dimensional anharmonic solid) show a substantial agreement between time and ensemble averages independent of the degree of stochasticity of the dynamics. On the other hand, a very different behavior is observed for a chain of weakly coupled rotators, where linear exchange effects are absent. In the high-temperature limit (weak coupling) we have a strong disagreement between time and ensemble averages for the specific heat even if the dynamics is chaotic. This behavior is related to the presence of spatially localized chaos, which prevents the complete filling of the accessible phase space of the system. Localized chaos is detected by the distribution of all the characteristic Liapunov exponents.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Na32c4983304a46498bf3d9feb0e6b6de
16 Nda64fc2571c14d368dce762321f2a86e
17 sg:journal.1040979
18 schema:name Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics
19 schema:pagination 539-559
20 schema:productId N150ca22ecd544c6789190b9f8a619b81
21 Nbe489bf0114e4729be71ad8d769d0c3e
22 Nc10db298ec1f4587bc55ce6fad06e6e5
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012658600
24 https://doi.org/10.1007/bf01019687
25 schema:sdDatePublished 2019-04-11T01:56
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N6dea348b72c54ea4a5734f5279173600
28 schema:url http://link.springer.com/10.1007/BF01019687
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N053d141fe0cc44b293b0d5baf00a78ab rdf:first sg:person.01365701241.87
33 rdf:rest N76b5ed65d5f4491bb85fce07be024a68
34 N150ca22ecd544c6789190b9f8a619b81 schema:name readcube_id
35 schema:value 3c4e9923a861c2c0dc8b3f2fbed8cf70ebeaedf77653f888d972e6aac49b2c47
36 rdf:type schema:PropertyValue
37 N3f828447052a44ad8b06ee1c874af159 schema:name Dipartimento di Fisica, Università degli Studi di Firenze, and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50125, Firenze, Italy
38 rdf:type schema:Organization
39 N540818e6f3da42dab21ae24e7e12fe90 rdf:first sg:person.01176525605.27
40 rdf:rest N053d141fe0cc44b293b0d5baf00a78ab
41 N6dea348b72c54ea4a5734f5279173600 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N76b5ed65d5f4491bb85fce07be024a68 rdf:first sg:person.01352261626.07
44 rdf:rest rdf:nil
45 N898db6815bdf4c5d8d5cba3f7e4e30f7 rdf:first sg:person.0772676522.84
46 rdf:rest N540818e6f3da42dab21ae24e7e12fe90
47 N9d5f6e9436a74d75b094bf06162060fd schema:name Dipartimento di Fisica, Università degli Studi di Firenze, and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50125, Firenze, Italy
48 rdf:type schema:Organization
49 Na32c4983304a46498bf3d9feb0e6b6de schema:issueNumber 3-4
50 rdf:type schema:PublicationIssue
51 Nbe489bf0114e4729be71ad8d769d0c3e schema:name doi
52 schema:value 10.1007/bf01019687
53 rdf:type schema:PropertyValue
54 Nc10db298ec1f4587bc55ce6fad06e6e5 schema:name dimensions_id
55 schema:value pub.1012658600
56 rdf:type schema:PropertyValue
57 Nda64fc2571c14d368dce762321f2a86e schema:volumeNumber 48
58 rdf:type schema:PublicationVolume
59 Ne46670d351eb4056bf637e8d3d6470c8 schema:name Osservatorio Astrofisico di Arcetri, and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50125, Firenze, Italy
60 rdf:type schema:Organization
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
65 schema:name Pure Mathematics
66 rdf:type schema:DefinedTerm
67 sg:journal.1040979 schema:issn 0022-4715
68 1572-9613
69 schema:name Journal of Statistical Physics
70 rdf:type schema:Periodical
71 sg:person.01176525605.27 schema:affiliation Ne46670d351eb4056bf637e8d3d6470c8
72 schema:familyName Pettini
73 schema:givenName Marco
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176525605.27
75 rdf:type schema:Person
76 sg:person.01352261626.07 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
77 schema:familyName Vulpiani
78 schema:givenName Angelo
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07
80 rdf:type schema:Person
81 sg:person.01365701241.87 schema:affiliation N9d5f6e9436a74d75b094bf06162060fd
82 schema:familyName Ruffo
83 schema:givenName Stefano
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365701241.87
85 rdf:type schema:Person
86 sg:person.0772676522.84 schema:affiliation N3f828447052a44ad8b06ee1c874af159
87 schema:familyName Livi
88 schema:givenName Roberto
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84
90 rdf:type schema:Person
91 sg:pub.10.1007/bf02723540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027238174
92 https://doi.org/10.1007/bf02723540
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1088/0305-4470/19/11/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059067990
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physreva.14.2338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466055
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physreva.19.1741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467533
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physreva.2.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467895
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
103 schema:name Dipartimento di Fisica, Università di Roma I, Italy
104 Gruppo Nazionale Struttura della Materia-Centro Interuniversitario di Struttura della Materia, Sezione di Roma, 00185, Rome, Italy
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...