Velocity and diffusion constant of a periodic one-dimensional hopping model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-06

AUTHORS

Bernard Derrida

ABSTRACT

The velocity and the diffusion constant are obtained for a periodic onedimensional hopping model of arbitrary periodN. These two quantities are expressed as explicit functions of all the hopping rates. The velocity and the diffusion constant of random systems are calculated by taking the limit N→Β. One finds by varying the distribution of hopping rates that the diffusion constant and the velocity are singular at different points. Lastly, several possible applications are proposed. More... »

PAGES

433-450

References to SciGraph publications

  • 1982-05. Non-Markoffian diffusion in a one-dimensional disordered lattice in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01019492

    DOI

    http://dx.doi.org/10.1007/bf01019492

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014413612


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Commissariat a l'Energie Atomique, Division de la Physique, Service de Physique Theorique Cen-Saclay, 91191, Gif-sur-Yvette Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Derrida", 
            "givenName": "Bernard", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01011627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015381872", 
              "https://doi.org/10.1007/bf01011627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.24.5260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060529723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.24.5260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060529723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.24.7474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.24.7474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.26.5950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060531670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.26.5950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060531670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.47.1496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060786530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.47.1496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060786530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.48.627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060787392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.48.627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060787392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.53.175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.53.175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1176996444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064405565"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1983-06", 
        "datePublishedReg": "1983-06-01", 
        "description": "The velocity and the diffusion constant are obtained for a periodic onedimensional hopping model of arbitrary periodN. These two quantities are expressed as explicit functions of all the hopping rates. The velocity and the diffusion constant of random systems are calculated by taking the limit N\u2192\u0392. One finds by varying the distribution of hopping rates that the diffusion constant and the velocity are singular at different points. Lastly, several possible applications are proposed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01019492", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "Velocity and diffusion constant of a periodic one-dimensional hopping model", 
        "pagination": "433-450", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "44aa87022b8890e5b6f4bfacfd470d0e2eca36fa5d68cb262c88a0680362120d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01019492"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014413612"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01019492", 
          "https://app.dimensions.ai/details/publication/pub.1014413612"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000495.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01019492"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01019492'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01019492'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01019492'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01019492'


     

    This table displays all metadata directly associated to this object as RDF triples.

    84 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01019492 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nbd447739363b4865ac211f2ad615d4e9
    4 schema:citation sg:pub.10.1007/bf01011627
    5 https://doi.org/10.1103/physrevb.24.5260
    6 https://doi.org/10.1103/physrevb.24.7474
    7 https://doi.org/10.1103/physrevb.26.5950
    8 https://doi.org/10.1103/physrevlett.47.1496
    9 https://doi.org/10.1103/physrevlett.48.627
    10 https://doi.org/10.1103/revmodphys.53.175
    11 https://doi.org/10.1214/aop/1176996444
    12 schema:datePublished 1983-06
    13 schema:datePublishedReg 1983-06-01
    14 schema:description The velocity and the diffusion constant are obtained for a periodic onedimensional hopping model of arbitrary periodN. These two quantities are expressed as explicit functions of all the hopping rates. The velocity and the diffusion constant of random systems are calculated by taking the limit N→Β. One finds by varying the distribution of hopping rates that the diffusion constant and the velocity are singular at different points. Lastly, several possible applications are proposed.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N2f83c31a6b8344d8a001109088ee9893
    19 Na1fcc8c2aea9480796feb473a15eb46d
    20 sg:journal.1040979
    21 schema:name Velocity and diffusion constant of a periodic one-dimensional hopping model
    22 schema:pagination 433-450
    23 schema:productId N1ea543357cba4249a2a0020faa86d79a
    24 N2398ef00e6844f358603604b909355a0
    25 Ne3cc790de97b459f94ad6ad3f27b3a22
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014413612
    27 https://doi.org/10.1007/bf01019492
    28 schema:sdDatePublished 2019-04-10T15:47
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Nb7d968d792d54919805f1411f3b8175f
    31 schema:url http://link.springer.com/10.1007/BF01019492
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N17f81b0dd78d49c7a5b3ba7911425603 schema:name Commissariat a l'Energie Atomique, Division de la Physique, Service de Physique Theorique Cen-Saclay, 91191, Gif-sur-Yvette Cedex, France
    36 rdf:type schema:Organization
    37 N1ea543357cba4249a2a0020faa86d79a schema:name doi
    38 schema:value 10.1007/bf01019492
    39 rdf:type schema:PropertyValue
    40 N2398ef00e6844f358603604b909355a0 schema:name dimensions_id
    41 schema:value pub.1014413612
    42 rdf:type schema:PropertyValue
    43 N2f83c31a6b8344d8a001109088ee9893 schema:issueNumber 3
    44 rdf:type schema:PublicationIssue
    45 N5c1e9e6520ab44feb56c902e5fc5c5cf schema:affiliation N17f81b0dd78d49c7a5b3ba7911425603
    46 schema:familyName Derrida
    47 schema:givenName Bernard
    48 rdf:type schema:Person
    49 Na1fcc8c2aea9480796feb473a15eb46d schema:volumeNumber 31
    50 rdf:type schema:PublicationVolume
    51 Nb7d968d792d54919805f1411f3b8175f schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 Nbd447739363b4865ac211f2ad615d4e9 rdf:first N5c1e9e6520ab44feb56c902e5fc5c5cf
    54 rdf:rest rdf:nil
    55 Ne3cc790de97b459f94ad6ad3f27b3a22 schema:name readcube_id
    56 schema:value 44aa87022b8890e5b6f4bfacfd470d0e2eca36fa5d68cb262c88a0680362120d
    57 rdf:type schema:PropertyValue
    58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Mathematical Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Pure Mathematics
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1040979 schema:issn 0022-4715
    65 1572-9613
    66 schema:name Journal of Statistical Physics
    67 rdf:type schema:Periodical
    68 sg:pub.10.1007/bf01011627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015381872
    69 https://doi.org/10.1007/bf01011627
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1103/physrevb.24.5260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060529723
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1103/physrevb.24.7474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060530021
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1103/physrevb.26.5950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060531670
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1103/physrevlett.47.1496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786530
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1103/physrevlett.48.627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060787392
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1103/revmodphys.53.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838971
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1214/aop/1176996444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405565
    84 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...