Velocity and diffusion constant of a periodic one-dimensional hopping model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-06

AUTHORS

Bernard Derrida

ABSTRACT

The velocity and the diffusion constant are obtained for a periodic onedimensional hopping model of arbitrary periodN. These two quantities are expressed as explicit functions of all the hopping rates. The velocity and the diffusion constant of random systems are calculated by taking the limit N→Β. One finds by varying the distribution of hopping rates that the diffusion constant and the velocity are singular at different points. Lastly, several possible applications are proposed. More... »

PAGES

433-450

References to SciGraph publications

  • 1982-05. Non-Markoffian diffusion in a one-dimensional disordered lattice in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01019492

    DOI

    http://dx.doi.org/10.1007/bf01019492

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014413612


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Commissariat a l'Energie Atomique, Division de la Physique, Service de Physique Theorique Cen-Saclay, 91191, Gif-sur-Yvette Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Derrida", 
            "givenName": "Bernard", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01011627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015381872", 
              "https://doi.org/10.1007/bf01011627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.24.5260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060529723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.24.5260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060529723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.24.7474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.24.7474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.26.5950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060531670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.26.5950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060531670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.47.1496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060786530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.47.1496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060786530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.48.627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060787392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.48.627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060787392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.53.175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.53.175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1176996444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064405565"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1983-06", 
        "datePublishedReg": "1983-06-01", 
        "description": "The velocity and the diffusion constant are obtained for a periodic onedimensional hopping model of arbitrary periodN. These two quantities are expressed as explicit functions of all the hopping rates. The velocity and the diffusion constant of random systems are calculated by taking the limit N\u2192\u0392. One finds by varying the distribution of hopping rates that the diffusion constant and the velocity are singular at different points. Lastly, several possible applications are proposed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01019492", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "Velocity and diffusion constant of a periodic one-dimensional hopping model", 
        "pagination": "433-450", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "44aa87022b8890e5b6f4bfacfd470d0e2eca36fa5d68cb262c88a0680362120d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01019492"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014413612"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01019492", 
          "https://app.dimensions.ai/details/publication/pub.1014413612"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000495.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01019492"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01019492'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01019492'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01019492'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01019492'


     

    This table displays all metadata directly associated to this object as RDF triples.

    84 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01019492 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N836b1588c50545239f90819909e85640
    4 schema:citation sg:pub.10.1007/bf01011627
    5 https://doi.org/10.1103/physrevb.24.5260
    6 https://doi.org/10.1103/physrevb.24.7474
    7 https://doi.org/10.1103/physrevb.26.5950
    8 https://doi.org/10.1103/physrevlett.47.1496
    9 https://doi.org/10.1103/physrevlett.48.627
    10 https://doi.org/10.1103/revmodphys.53.175
    11 https://doi.org/10.1214/aop/1176996444
    12 schema:datePublished 1983-06
    13 schema:datePublishedReg 1983-06-01
    14 schema:description The velocity and the diffusion constant are obtained for a periodic onedimensional hopping model of arbitrary periodN. These two quantities are expressed as explicit functions of all the hopping rates. The velocity and the diffusion constant of random systems are calculated by taking the limit N→Β. One finds by varying the distribution of hopping rates that the diffusion constant and the velocity are singular at different points. Lastly, several possible applications are proposed.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N7408f0b9463b46f98e7af1a21e64b7a8
    19 Ne8e318849d6c4217b969fff72aa2de27
    20 sg:journal.1040979
    21 schema:name Velocity and diffusion constant of a periodic one-dimensional hopping model
    22 schema:pagination 433-450
    23 schema:productId N10f43ccd32c14060bdf2c44d62ec0673
    24 N4da70698b6b442eab6d17623cdd38958
    25 N7c149a191fd848dd82fd94bc946848c9
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014413612
    27 https://doi.org/10.1007/bf01019492
    28 schema:sdDatePublished 2019-04-10T15:47
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Ne3f2f73247c445389394d0d0ada52b10
    31 schema:url http://link.springer.com/10.1007/BF01019492
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N10f43ccd32c14060bdf2c44d62ec0673 schema:name dimensions_id
    36 schema:value pub.1014413612
    37 rdf:type schema:PropertyValue
    38 N4da70698b6b442eab6d17623cdd38958 schema:name readcube_id
    39 schema:value 44aa87022b8890e5b6f4bfacfd470d0e2eca36fa5d68cb262c88a0680362120d
    40 rdf:type schema:PropertyValue
    41 N5381a5e4ae2e4ceaa30545b8e0e84d34 schema:affiliation N595ac5ddaa1c4fb5853041f726cca37c
    42 schema:familyName Derrida
    43 schema:givenName Bernard
    44 rdf:type schema:Person
    45 N595ac5ddaa1c4fb5853041f726cca37c schema:name Commissariat a l'Energie Atomique, Division de la Physique, Service de Physique Theorique Cen-Saclay, 91191, Gif-sur-Yvette Cedex, France
    46 rdf:type schema:Organization
    47 N7408f0b9463b46f98e7af1a21e64b7a8 schema:issueNumber 3
    48 rdf:type schema:PublicationIssue
    49 N7c149a191fd848dd82fd94bc946848c9 schema:name doi
    50 schema:value 10.1007/bf01019492
    51 rdf:type schema:PropertyValue
    52 N836b1588c50545239f90819909e85640 rdf:first N5381a5e4ae2e4ceaa30545b8e0e84d34
    53 rdf:rest rdf:nil
    54 Ne3f2f73247c445389394d0d0ada52b10 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 Ne8e318849d6c4217b969fff72aa2de27 schema:volumeNumber 31
    57 rdf:type schema:PublicationVolume
    58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Mathematical Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Pure Mathematics
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1040979 schema:issn 0022-4715
    65 1572-9613
    66 schema:name Journal of Statistical Physics
    67 rdf:type schema:Periodical
    68 sg:pub.10.1007/bf01011627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015381872
    69 https://doi.org/10.1007/bf01011627
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1103/physrevb.24.5260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060529723
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1103/physrevb.24.7474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060530021
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1103/physrevb.26.5950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060531670
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1103/physrevlett.47.1496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786530
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1103/physrevlett.48.627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060787392
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1103/revmodphys.53.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838971
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1214/aop/1176996444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405565
    84 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...