Self-consistent treatment of a phase transition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1973-09

AUTHORS

Daniel J. Amit, Marco Zannetti

ABSTRACT

A self-consistent treatment of a phase transition with a scalar order parameter in the ordered and disordered state is described. The factorization of the correlation functions in the disordered phase leads to a shift of the transition temperature, a linear divergence (ν=1) for the correlation length, a quadratic divergence (γ=2) for the susceptibility, and a finite value (α=−1) for the specific heat. In the ordered phase the factorization of the correlation functions leads to no divergences in the correlation length and susceptibility. A study of the free energy shows that order persists above the transition temperature found by assuming disorder. The requirement of thermodynamic stability induces a first-order transition at a temperature which lies between the bare transition temperature and the shifted one. More... »

PAGES

1-21

References to SciGraph publications

  • 1973-01. Field theory description of continuous phase transitions in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01016794

    DOI

    http://dx.doi.org/10.1007/bf01016794

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019951007


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel", 
              "id": "http://www.grid.ac/institutes/grid.9619.7", 
              "name": [
                "The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amit", 
            "givenName": "Daniel J.", 
            "id": "sg:person.0615137425.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615137425.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Brandeis University, Waltham, Massachusetts", 
              "id": "http://www.grid.ac/institutes/grid.253264.4", 
              "name": [
                "Department of Physics, Brandeis University, Waltham, Massachusetts"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zannetti", 
            "givenName": "Marco", 
            "id": "sg:person.0763640651.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763640651.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01406131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045251107", 
              "https://doi.org/10.1007/bf01406131"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1973-09", 
        "datePublishedReg": "1973-09-01", 
        "description": "A self-consistent treatment of a phase transition with a scalar order parameter in the ordered and disordered state is described. The factorization of the correlation functions in the disordered phase leads to a shift of the transition temperature, a linear divergence (\u03bd=1) for the correlation length, a quadratic divergence (\u03b3=2) for the susceptibility, and a finite value (\u03b1=\u22121) for the specific heat. In the ordered phase the factorization of the correlation functions leads to no divergences in the correlation length and susceptibility. A study of the free energy shows that order persists above the transition temperature found by assuming disorder. The requirement of thermodynamic stability induces a first-order transition at a temperature which lies between the bare transition temperature and the shifted one.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01016794", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "self-consistent treatment", 
          "correlation functions", 
          "correlation length", 
          "scalar order parameter", 
          "phase transition", 
          "first-order transition", 
          "order parameter", 
          "linear divergence", 
          "finite value", 
          "specific heat", 
          "transition temperature", 
          "quadratic divergences", 
          "factorization", 
          "free energy", 
          "transition", 
          "divergence", 
          "function", 
          "parameters", 
          "temperature", 
          "thermodynamic stability", 
          "energy", 
          "stability", 
          "length", 
          "order", 
          "state", 
          "phase", 
          "heat", 
          "susceptibility", 
          "values", 
          "requirements", 
          "shift", 
          "study", 
          "treatment", 
          "disorders"
        ], 
        "name": "Self-consistent treatment of a phase transition", 
        "pagination": "1-21", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019951007"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01016794"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01016794", 
          "https://app.dimensions.ai/details/publication/pub.1019951007"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T09:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_107.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01016794"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01016794'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01016794'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01016794'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01016794'


     

    This table displays all metadata directly associated to this object as RDF triples.

    106 TRIPLES      22 PREDICATES      61 URIs      52 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01016794 schema:about anzsrc-for:01
    2 anzsrc-for:02
    3 schema:author Nc28de15e64dc4a6494154c4e42c61abe
    4 schema:citation sg:pub.10.1007/bf01406131
    5 schema:datePublished 1973-09
    6 schema:datePublishedReg 1973-09-01
    7 schema:description A self-consistent treatment of a phase transition with a scalar order parameter in the ordered and disordered state is described. The factorization of the correlation functions in the disordered phase leads to a shift of the transition temperature, a linear divergence (ν=1) for the correlation length, a quadratic divergence (γ=2) for the susceptibility, and a finite value (α=−1) for the specific heat. In the ordered phase the factorization of the correlation functions leads to no divergences in the correlation length and susceptibility. A study of the free energy shows that order persists above the transition temperature found by assuming disorder. The requirement of thermodynamic stability induces a first-order transition at a temperature which lies between the bare transition temperature and the shifted one.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf Ndd677f7198e440659620c1ff8b4609c6
    12 Ne9d90c0551d840ba8254e571824e2c0b
    13 sg:journal.1040979
    14 schema:keywords correlation functions
    15 correlation length
    16 disorders
    17 divergence
    18 energy
    19 factorization
    20 finite value
    21 first-order transition
    22 free energy
    23 function
    24 heat
    25 length
    26 linear divergence
    27 order
    28 order parameter
    29 parameters
    30 phase
    31 phase transition
    32 quadratic divergences
    33 requirements
    34 scalar order parameter
    35 self-consistent treatment
    36 shift
    37 specific heat
    38 stability
    39 state
    40 study
    41 susceptibility
    42 temperature
    43 thermodynamic stability
    44 transition
    45 transition temperature
    46 treatment
    47 values
    48 schema:name Self-consistent treatment of a phase transition
    49 schema:pagination 1-21
    50 schema:productId N16f82eb63630483aaae172fe9dd73241
    51 Nca6b611211fb4496a21874d0180a7b26
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019951007
    53 https://doi.org/10.1007/bf01016794
    54 schema:sdDatePublished 2022-05-10T09:38
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N47c675a1a841471a95db1d2971aeb1b6
    57 schema:url https://doi.org/10.1007/bf01016794
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N16f82eb63630483aaae172fe9dd73241 schema:name dimensions_id
    62 schema:value pub.1019951007
    63 rdf:type schema:PropertyValue
    64 N47c675a1a841471a95db1d2971aeb1b6 schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N6d7876d3774f451ba8fd53395a26e2c5 rdf:first sg:person.0763640651.14
    67 rdf:rest rdf:nil
    68 Nc28de15e64dc4a6494154c4e42c61abe rdf:first sg:person.0615137425.75
    69 rdf:rest N6d7876d3774f451ba8fd53395a26e2c5
    70 Nca6b611211fb4496a21874d0180a7b26 schema:name doi
    71 schema:value 10.1007/bf01016794
    72 rdf:type schema:PropertyValue
    73 Ndd677f7198e440659620c1ff8b4609c6 schema:issueNumber 1
    74 rdf:type schema:PublicationIssue
    75 Ne9d90c0551d840ba8254e571824e2c0b schema:volumeNumber 9
    76 rdf:type schema:PublicationVolume
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Physical Sciences
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1040979 schema:issn 0022-4715
    84 1572-9613
    85 schema:name Journal of Statistical Physics
    86 schema:publisher Springer Nature
    87 rdf:type schema:Periodical
    88 sg:person.0615137425.75 schema:affiliation grid-institutes:grid.9619.7
    89 schema:familyName Amit
    90 schema:givenName Daniel J.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615137425.75
    92 rdf:type schema:Person
    93 sg:person.0763640651.14 schema:affiliation grid-institutes:grid.253264.4
    94 schema:familyName Zannetti
    95 schema:givenName Marco
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763640651.14
    97 rdf:type schema:Person
    98 sg:pub.10.1007/bf01406131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045251107
    99 https://doi.org/10.1007/bf01406131
    100 rdf:type schema:CreativeWork
    101 grid-institutes:grid.253264.4 schema:alternateName Department of Physics, Brandeis University, Waltham, Massachusetts
    102 schema:name Department of Physics, Brandeis University, Waltham, Massachusetts
    103 rdf:type schema:Organization
    104 grid-institutes:grid.9619.7 schema:alternateName The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
    105 schema:name The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
    106 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...