Ontology type: schema:ScholarlyArticle
1973-09
AUTHORSDaniel J. Amit, Marco Zannetti
ABSTRACTA self-consistent treatment of a phase transition with a scalar order parameter in the ordered and disordered state is described. The factorization of the correlation functions in the disordered phase leads to a shift of the transition temperature, a linear divergence (ν=1) for the correlation length, a quadratic divergence (γ=2) for the susceptibility, and a finite value (α=−1) for the specific heat. In the ordered phase the factorization of the correlation functions leads to no divergences in the correlation length and susceptibility. A study of the free energy shows that order persists above the transition temperature found by assuming disorder. The requirement of thermodynamic stability induces a first-order transition at a temperature which lies between the bare transition temperature and the shifted one. More... »
PAGES1-21
http://scigraph.springernature.com/pub.10.1007/bf01016794
DOIhttp://dx.doi.org/10.1007/bf01016794
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1019951007
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel",
"id": "http://www.grid.ac/institutes/grid.9619.7",
"name": [
"The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel"
],
"type": "Organization"
},
"familyName": "Amit",
"givenName": "Daniel J.",
"id": "sg:person.0615137425.75",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615137425.75"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, Brandeis University, Waltham, Massachusetts",
"id": "http://www.grid.ac/institutes/grid.253264.4",
"name": [
"Department of Physics, Brandeis University, Waltham, Massachusetts"
],
"type": "Organization"
},
"familyName": "Zannetti",
"givenName": "Marco",
"id": "sg:person.0763640651.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763640651.14"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01406131",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045251107",
"https://doi.org/10.1007/bf01406131"
],
"type": "CreativeWork"
}
],
"datePublished": "1973-09",
"datePublishedReg": "1973-09-01",
"description": "A self-consistent treatment of a phase transition with a scalar order parameter in the ordered and disordered state is described. The factorization of the correlation functions in the disordered phase leads to a shift of the transition temperature, a linear divergence (\u03bd=1) for the correlation length, a quadratic divergence (\u03b3=2) for the susceptibility, and a finite value (\u03b1=\u22121) for the specific heat. In the ordered phase the factorization of the correlation functions leads to no divergences in the correlation length and susceptibility. A study of the free energy shows that order persists above the transition temperature found by assuming disorder. The requirement of thermodynamic stability induces a first-order transition at a temperature which lies between the bare transition temperature and the shifted one.",
"genre": "article",
"id": "sg:pub.10.1007/bf01016794",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1040979",
"issn": [
"0022-4715",
"1572-9613"
],
"name": "Journal of Statistical Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"keywords": [
"self-consistent treatment",
"correlation functions",
"correlation length",
"scalar order parameter",
"phase transition",
"first-order transition",
"order parameter",
"linear divergence",
"finite value",
"specific heat",
"transition temperature",
"quadratic divergences",
"factorization",
"free energy",
"transition",
"divergence",
"function",
"parameters",
"temperature",
"thermodynamic stability",
"energy",
"stability",
"length",
"order",
"state",
"phase",
"heat",
"susceptibility",
"values",
"requirements",
"shift",
"study",
"treatment",
"disorders"
],
"name": "Self-consistent treatment of a phase transition",
"pagination": "1-21",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1019951007"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01016794"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01016794",
"https://app.dimensions.ai/details/publication/pub.1019951007"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_107.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01016794"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01016794'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01016794'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01016794'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01016794'
This table displays all metadata directly associated to this object as RDF triples.
106 TRIPLES
22 PREDICATES
61 URIs
52 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf01016794 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:02 |
3 | ″ | schema:author | Nc28de15e64dc4a6494154c4e42c61abe |
4 | ″ | schema:citation | sg:pub.10.1007/bf01406131 |
5 | ″ | schema:datePublished | 1973-09 |
6 | ″ | schema:datePublishedReg | 1973-09-01 |
7 | ″ | schema:description | A self-consistent treatment of a phase transition with a scalar order parameter in the ordered and disordered state is described. The factorization of the correlation functions in the disordered phase leads to a shift of the transition temperature, a linear divergence (ν=1) for the correlation length, a quadratic divergence (γ=2) for the susceptibility, and a finite value (α=−1) for the specific heat. In the ordered phase the factorization of the correlation functions leads to no divergences in the correlation length and susceptibility. A study of the free energy shows that order persists above the transition temperature found by assuming disorder. The requirement of thermodynamic stability induces a first-order transition at a temperature which lies between the bare transition temperature and the shifted one. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Ndd677f7198e440659620c1ff8b4609c6 |
12 | ″ | ″ | Ne9d90c0551d840ba8254e571824e2c0b |
13 | ″ | ″ | sg:journal.1040979 |
14 | ″ | schema:keywords | correlation functions |
15 | ″ | ″ | correlation length |
16 | ″ | ″ | disorders |
17 | ″ | ″ | divergence |
18 | ″ | ″ | energy |
19 | ″ | ″ | factorization |
20 | ″ | ″ | finite value |
21 | ″ | ″ | first-order transition |
22 | ″ | ″ | free energy |
23 | ″ | ″ | function |
24 | ″ | ″ | heat |
25 | ″ | ″ | length |
26 | ″ | ″ | linear divergence |
27 | ″ | ″ | order |
28 | ″ | ″ | order parameter |
29 | ″ | ″ | parameters |
30 | ″ | ″ | phase |
31 | ″ | ″ | phase transition |
32 | ″ | ″ | quadratic divergences |
33 | ″ | ″ | requirements |
34 | ″ | ″ | scalar order parameter |
35 | ″ | ″ | self-consistent treatment |
36 | ″ | ″ | shift |
37 | ″ | ″ | specific heat |
38 | ″ | ″ | stability |
39 | ″ | ″ | state |
40 | ″ | ″ | study |
41 | ″ | ″ | susceptibility |
42 | ″ | ″ | temperature |
43 | ″ | ″ | thermodynamic stability |
44 | ″ | ″ | transition |
45 | ″ | ″ | transition temperature |
46 | ″ | ″ | treatment |
47 | ″ | ″ | values |
48 | ″ | schema:name | Self-consistent treatment of a phase transition |
49 | ″ | schema:pagination | 1-21 |
50 | ″ | schema:productId | N16f82eb63630483aaae172fe9dd73241 |
51 | ″ | ″ | Nca6b611211fb4496a21874d0180a7b26 |
52 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019951007 |
53 | ″ | ″ | https://doi.org/10.1007/bf01016794 |
54 | ″ | schema:sdDatePublished | 2022-05-10T09:38 |
55 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
56 | ″ | schema:sdPublisher | N47c675a1a841471a95db1d2971aeb1b6 |
57 | ″ | schema:url | https://doi.org/10.1007/bf01016794 |
58 | ″ | sgo:license | sg:explorer/license/ |
59 | ″ | sgo:sdDataset | articles |
60 | ″ | rdf:type | schema:ScholarlyArticle |
61 | N16f82eb63630483aaae172fe9dd73241 | schema:name | dimensions_id |
62 | ″ | schema:value | pub.1019951007 |
63 | ″ | rdf:type | schema:PropertyValue |
64 | N47c675a1a841471a95db1d2971aeb1b6 | schema:name | Springer Nature - SN SciGraph project |
65 | ″ | rdf:type | schema:Organization |
66 | N6d7876d3774f451ba8fd53395a26e2c5 | rdf:first | sg:person.0763640651.14 |
67 | ″ | rdf:rest | rdf:nil |
68 | Nc28de15e64dc4a6494154c4e42c61abe | rdf:first | sg:person.0615137425.75 |
69 | ″ | rdf:rest | N6d7876d3774f451ba8fd53395a26e2c5 |
70 | Nca6b611211fb4496a21874d0180a7b26 | schema:name | doi |
71 | ″ | schema:value | 10.1007/bf01016794 |
72 | ″ | rdf:type | schema:PropertyValue |
73 | Ndd677f7198e440659620c1ff8b4609c6 | schema:issueNumber | 1 |
74 | ″ | rdf:type | schema:PublicationIssue |
75 | Ne9d90c0551d840ba8254e571824e2c0b | schema:volumeNumber | 9 |
76 | ″ | rdf:type | schema:PublicationVolume |
77 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
78 | ″ | schema:name | Mathematical Sciences |
79 | ″ | rdf:type | schema:DefinedTerm |
80 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
81 | ″ | schema:name | Physical Sciences |
82 | ″ | rdf:type | schema:DefinedTerm |
83 | sg:journal.1040979 | schema:issn | 0022-4715 |
84 | ″ | ″ | 1572-9613 |
85 | ″ | schema:name | Journal of Statistical Physics |
86 | ″ | schema:publisher | Springer Nature |
87 | ″ | rdf:type | schema:Periodical |
88 | sg:person.0615137425.75 | schema:affiliation | grid-institutes:grid.9619.7 |
89 | ″ | schema:familyName | Amit |
90 | ″ | schema:givenName | Daniel J. |
91 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615137425.75 |
92 | ″ | rdf:type | schema:Person |
93 | sg:person.0763640651.14 | schema:affiliation | grid-institutes:grid.253264.4 |
94 | ″ | schema:familyName | Zannetti |
95 | ″ | schema:givenName | Marco |
96 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763640651.14 |
97 | ″ | rdf:type | schema:Person |
98 | sg:pub.10.1007/bf01406131 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045251107 |
99 | ″ | ″ | https://doi.org/10.1007/bf01406131 |
100 | ″ | rdf:type | schema:CreativeWork |
101 | grid-institutes:grid.253264.4 | schema:alternateName | Department of Physics, Brandeis University, Waltham, Massachusetts |
102 | ″ | schema:name | Department of Physics, Brandeis University, Waltham, Massachusetts |
103 | ″ | rdf:type | schema:Organization |
104 | grid-institutes:grid.9619.7 | schema:alternateName | The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel |
105 | ″ | schema:name | The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel |
106 | ″ | rdf:type | schema:Organization |