Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-04

AUTHORS

P. Grassberger, R. Badii, A. Politi

ABSTRACT

The analysis of dynamical systems in terms of spectra of singularities is extended to higher dimensions and to nonhyperbolic systems. Prominent roles in our approach are played by the generalized partial dimensions of the invariant measure and by the distribution of effective Liapunov exponents. For hyperbolic attractors, the latter determines the metric entropies and provides one constraint on the partial dimensions. For nonhyperbolic attractors, there are important modifications. We discuss them for the examples of the logistic and Hénon map. We show, in particular, that the generalized dimensions have singularities with noncontinuous derivative, similar to first-order phase transitions in statistical mechanics. More... »

PAGES

135-178

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01015324

DOI

http://dx.doi.org/10.1007/bf01015324

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012649108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wuppertal", 
          "id": "https://www.grid.ac/institutes/grid.7787.f", 
          "name": [
            "Physics Department, University of Wuppertal, D-5600, Wuppertal 1, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grassberger", 
        "givenName": "P.", 
        "id": "sg:person.0704113004.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.7400.3", 
          "name": [
            "Institute of Theoretical Physics, University of Zurich, CH-8001, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Badii", 
        "givenName": "R.", 
        "id": "sg:person.012427002335.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012427002335.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale di Ottica", 
          "id": "https://www.grid.ac/institutes/grid.425378.f", 
          "name": [
            "Istituto Nazionale di Ottica, I-50125, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Politi", 
        "givenName": "A.", 
        "id": "sg:person.013264105675.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01420570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018974396", 
          "https://doi.org/10.1007/bf01420570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01420570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018974396", 
          "https://doi.org/10.1007/bf01420570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01012932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033195499", 
          "https://doi.org/10.1007/bf01012932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036786184", 
          "https://doi.org/10.1007/bf01941800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036786184", 
          "https://doi.org/10.1007/bf01941800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01608556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038318754", 
          "https://doi.org/10.1007/bf01608556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01608556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038318754", 
          "https://doi.org/10.1007/bf01608556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1977v032n04abeh001639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058194255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/35/3/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058998272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.33.1141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.33.1141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.33.4092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.33.4092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.34.659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060475450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.34.659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060475450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.35.1288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060475546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.35.1288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060475546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.4725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.4725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.35.898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060543170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.35.898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060543170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.1661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.1661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.57.617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.57.617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.70.1264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063139190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3743-8_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089719675", 
          "https://doi.org/10.1007/978-1-4899-3743-8_5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-04", 
    "datePublishedReg": "1988-04-01", 
    "description": "The analysis of dynamical systems in terms of spectra of singularities is extended to higher dimensions and to nonhyperbolic systems. Prominent roles in our approach are played by the generalized partial dimensions of the invariant measure and by the distribution of effective Liapunov exponents. For hyperbolic attractors, the latter determines the metric entropies and provides one constraint on the partial dimensions. For nonhyperbolic attractors, there are important modifications. We discuss them for the examples of the logistic and H\u00e9non map. We show, in particular, that the generalized dimensions have singularities with noncontinuous derivative, similar to first-order phase transitions in statistical mechanics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01015324", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors", 
    "pagination": "135-178", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3c4334dbb2fc8ac2daa1ed61ce5e76968c083e8c34f46e03fafce05a86e49de3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01015324"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012649108"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01015324", 
      "https://app.dimensions.ai/details/publication/pub.1012649108"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01015324"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01015324'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01015324'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01015324'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01015324'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01015324 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4b99610b59be43f48b47d34da4392d6d
4 schema:citation sg:pub.10.1007/978-1-4899-3743-8_5
5 sg:pub.10.1007/bf01012932
6 sg:pub.10.1007/bf01420570
7 sg:pub.10.1007/bf01608556
8 sg:pub.10.1007/bf01941800
9 https://doi.org/10.1070/rm1977v032n04abeh001639
10 https://doi.org/10.1088/0031-8949/35/3/005
11 https://doi.org/10.1103/physreva.33.1141
12 https://doi.org/10.1103/physreva.33.4092
13 https://doi.org/10.1103/physreva.34.659
14 https://doi.org/10.1103/physreva.35.1288
15 https://doi.org/10.1103/physrevb.31.4725
16 https://doi.org/10.1103/physrevb.35.898
17 https://doi.org/10.1103/physrevlett.52.1661
18 https://doi.org/10.1103/revmodphys.57.617
19 https://doi.org/10.1143/ptp.70.1264
20 https://doi.org/10.2307/1971328
21 schema:datePublished 1988-04
22 schema:datePublishedReg 1988-04-01
23 schema:description The analysis of dynamical systems in terms of spectra of singularities is extended to higher dimensions and to nonhyperbolic systems. Prominent roles in our approach are played by the generalized partial dimensions of the invariant measure and by the distribution of effective Liapunov exponents. For hyperbolic attractors, the latter determines the metric entropies and provides one constraint on the partial dimensions. For nonhyperbolic attractors, there are important modifications. We discuss them for the examples of the logistic and Hénon map. We show, in particular, that the generalized dimensions have singularities with noncontinuous derivative, similar to first-order phase transitions in statistical mechanics.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N60f37b4211604c3d85614b82a4e4c723
28 N68259ccb878e421e93a1f283f9395b0a
29 sg:journal.1040979
30 schema:name Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors
31 schema:pagination 135-178
32 schema:productId N981ae7a319be41159dd8fba9161ec035
33 Nc0a7e97869fd4f39a945053df0737fd8
34 Ncc9e048268ff4c9d8a885a2f57f0012a
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649108
36 https://doi.org/10.1007/bf01015324
37 schema:sdDatePublished 2019-04-10T14:59
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nec5fda2f9da8491595cdd4e2b25ff49d
40 schema:url http://link.springer.com/10.1007/BF01015324
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N4b99610b59be43f48b47d34da4392d6d rdf:first sg:person.0704113004.84
45 rdf:rest N9e3eb2403a9b434a9d531f1bd12a2621
46 N60f37b4211604c3d85614b82a4e4c723 schema:volumeNumber 51
47 rdf:type schema:PublicationVolume
48 N68259ccb878e421e93a1f283f9395b0a schema:issueNumber 1-2
49 rdf:type schema:PublicationIssue
50 N72aec9373d9c453287a825d58d5b96e7 rdf:first sg:person.013264105675.78
51 rdf:rest rdf:nil
52 N981ae7a319be41159dd8fba9161ec035 schema:name doi
53 schema:value 10.1007/bf01015324
54 rdf:type schema:PropertyValue
55 N9e3eb2403a9b434a9d531f1bd12a2621 rdf:first sg:person.012427002335.57
56 rdf:rest N72aec9373d9c453287a825d58d5b96e7
57 Nc0a7e97869fd4f39a945053df0737fd8 schema:name readcube_id
58 schema:value 3c4334dbb2fc8ac2daa1ed61ce5e76968c083e8c34f46e03fafce05a86e49de3
59 rdf:type schema:PropertyValue
60 Ncc9e048268ff4c9d8a885a2f57f0012a schema:name dimensions_id
61 schema:value pub.1012649108
62 rdf:type schema:PropertyValue
63 Nec5fda2f9da8491595cdd4e2b25ff49d schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1040979 schema:issn 0022-4715
72 1572-9613
73 schema:name Journal of Statistical Physics
74 rdf:type schema:Periodical
75 sg:person.012427002335.57 schema:affiliation https://www.grid.ac/institutes/grid.7400.3
76 schema:familyName Badii
77 schema:givenName R.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012427002335.57
79 rdf:type schema:Person
80 sg:person.013264105675.78 schema:affiliation https://www.grid.ac/institutes/grid.425378.f
81 schema:familyName Politi
82 schema:givenName A.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78
84 rdf:type schema:Person
85 sg:person.0704113004.84 schema:affiliation https://www.grid.ac/institutes/grid.7787.f
86 schema:familyName Grassberger
87 schema:givenName P.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84
89 rdf:type schema:Person
90 sg:pub.10.1007/978-1-4899-3743-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089719675
91 https://doi.org/10.1007/978-1-4899-3743-8_5
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01012932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033195499
94 https://doi.org/10.1007/bf01012932
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf01420570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018974396
97 https://doi.org/10.1007/bf01420570
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01608556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038318754
100 https://doi.org/10.1007/bf01608556
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01941800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036786184
103 https://doi.org/10.1007/bf01941800
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1070/rm1977v032n04abeh001639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194255
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1088/0031-8949/35/3/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058998272
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physreva.33.1141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060474178
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physreva.33.4092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060474639
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physreva.34.659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060475450
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physreva.35.1288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060475546
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevb.31.4725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537281
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevb.35.898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060543170
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevlett.52.1661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789857
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/revmodphys.57.617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839073
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1143/ptp.70.1264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063139190
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2307/1971328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676611
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.425378.f schema:alternateName Istituto Nazionale di Ottica
130 schema:name Istituto Nazionale di Ottica, I-50125, Firenze, Italy
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.7400.3 schema:alternateName University of Zurich
133 schema:name Institute of Theoretical Physics, University of Zurich, CH-8001, Zurich, Switzerland
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.7787.f schema:alternateName University of Wuppertal
136 schema:name Physics Department, University of Wuppertal, D-5600, Wuppertal 1, Federal Republic of Germany
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...