Polymers on disordered trees, spin glasses, and traveling waves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-06

AUTHORS

B. Derrida, H. Spohn

ABSTRACT

We show that the problem of a directed polymer on a tree with disorder can be reduced to the study of nonlinear equations of reaction-diffusion type. These equations admit traveling wave solutions that move at all possible speeds above a certain minimal speed. The speed of the wavefront is the free energy of the polymer problem and the minimal speed corresponds to a phase transition to a glassy phase similar to the spin-glass phase. Several properties of the polymer problem can be extracted from the correspondence with the traveling wave: probability distribution of the free energy, overlaps, etc. More... »

PAGES

817-840

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01014886

DOI

http://dx.doi.org/10.1007/bf01014886

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019494097


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Institute for Theoretical Physics, University of California, 93106, Santa Barbara, California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Derrida", 
        "givenName": "B.", 
        "id": "sg:person.0766735742.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766735742.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Institute for Theoretical Physics, University of California, 93106, Santa Barbara, California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spohn", 
        "givenName": "H.", 
        "id": "sg:person.0762212765.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762212765.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01210613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015783977", 
          "https://doi.org/10.1007/bf01210613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015783977", 
          "https://doi.org/10.1007/bf01210613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042063001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042063001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01013370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049857867", 
          "https://doi.org/10.1007/bf01013370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:0198500460101700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056991183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphyslet:019850046019090900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057009892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphyslet:01985004606022300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057009958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.16.732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.16.732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.34.5091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060475393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.34.5091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060475393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.5465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.5465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.24.2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.24.2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.6409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.6409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.2026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.2026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.2924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.2924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/4/6/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230938"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-06", 
    "datePublishedReg": "1988-06-01", 
    "description": "We show that the problem of a directed polymer on a tree with disorder can be reduced to the study of nonlinear equations of reaction-diffusion type. These equations admit traveling wave solutions that move at all possible speeds above a certain minimal speed. The speed of the wavefront is the free energy of the polymer problem and the minimal speed corresponds to a phase transition to a glassy phase similar to the spin-glass phase. Several properties of the polymer problem can be extracted from the correspondence with the traveling wave: probability distribution of the free energy, overlaps, etc.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01014886", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Polymers on disordered trees, spin glasses, and traveling waves", 
    "pagination": "817-840", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5ce220d941d3e0267333fb559988695b4e2b5e4b5405cca335b00e6d30500a7c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01014886"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019494097"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01014886", 
      "https://app.dimensions.ai/details/publication/pub.1019494097"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01014886"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01014886'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01014886'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01014886'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01014886'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01014886 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N7da529f6013241deb12089c7a93c756c
4 schema:citation sg:pub.10.1007/bf01013370
5 sg:pub.10.1007/bf01210613
6 https://doi.org/10.1002/cpa.3160280302
7 https://doi.org/10.1051/jphys:0198500460101700
8 https://doi.org/10.1051/jphyslet:019850046019090900
9 https://doi.org/10.1051/jphyslet:01985004606022300
10 https://doi.org/10.1103/physreva.16.732
11 https://doi.org/10.1103/physreva.34.5091
12 https://doi.org/10.1103/physreva.36.5465
13 https://doi.org/10.1103/physrevb.24.2613
14 https://doi.org/10.1103/physrevb.34.6409
15 https://doi.org/10.1103/physrevlett.54.2026
16 https://doi.org/10.1103/physrevlett.55.2924
17 https://doi.org/10.1103/physrevlett.56.472
18 https://doi.org/10.1103/physrevlett.56.889
19 https://doi.org/10.1103/physrevlett.58.2087
20 https://doi.org/10.1209/0295-5075/4/6/003
21 schema:datePublished 1988-06
22 schema:datePublishedReg 1988-06-01
23 schema:description We show that the problem of a directed polymer on a tree with disorder can be reduced to the study of nonlinear equations of reaction-diffusion type. These equations admit traveling wave solutions that move at all possible speeds above a certain minimal speed. The speed of the wavefront is the free energy of the polymer problem and the minimal speed corresponds to a phase transition to a glassy phase similar to the spin-glass phase. Several properties of the polymer problem can be extracted from the correspondence with the traveling wave: probability distribution of the free energy, overlaps, etc.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N28590e49ba6848eab1b1aa9e2c02cffb
28 N552da67593b24e88b3f54aa411a611ca
29 sg:journal.1040979
30 schema:name Polymers on disordered trees, spin glasses, and traveling waves
31 schema:pagination 817-840
32 schema:productId N2f9f21e1c4534bf9a2dc8b2532850c5d
33 N32f6593c931046d88d74dea37b3b2735
34 N8901c53a69b8417687c216502f75896c
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019494097
36 https://doi.org/10.1007/bf01014886
37 schema:sdDatePublished 2019-04-10T17:28
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N40a1335848fa42d082a765a61666449d
40 schema:url http://link.springer.com/10.1007/BF01014886
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N28590e49ba6848eab1b1aa9e2c02cffb schema:issueNumber 5-6
45 rdf:type schema:PublicationIssue
46 N2f9f21e1c4534bf9a2dc8b2532850c5d schema:name doi
47 schema:value 10.1007/bf01014886
48 rdf:type schema:PropertyValue
49 N32f6593c931046d88d74dea37b3b2735 schema:name readcube_id
50 schema:value 5ce220d941d3e0267333fb559988695b4e2b5e4b5405cca335b00e6d30500a7c
51 rdf:type schema:PropertyValue
52 N40a1335848fa42d082a765a61666449d schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N552da67593b24e88b3f54aa411a611ca schema:volumeNumber 51
55 rdf:type schema:PublicationVolume
56 N7da529f6013241deb12089c7a93c756c rdf:first sg:person.0766735742.49
57 rdf:rest Ne7217233925a41d1bc963593234b31c7
58 N8901c53a69b8417687c216502f75896c schema:name dimensions_id
59 schema:value pub.1019494097
60 rdf:type schema:PropertyValue
61 Ne7217233925a41d1bc963593234b31c7 rdf:first sg:person.0762212765.01
62 rdf:rest rdf:nil
63 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
64 schema:name Engineering
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
67 schema:name Materials Engineering
68 rdf:type schema:DefinedTerm
69 sg:journal.1040979 schema:issn 0022-4715
70 1572-9613
71 schema:name Journal of Statistical Physics
72 rdf:type schema:Periodical
73 sg:person.0762212765.01 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
74 schema:familyName Spohn
75 schema:givenName H.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762212765.01
77 rdf:type schema:Person
78 sg:person.0766735742.49 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
79 schema:familyName Derrida
80 schema:givenName B.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766735742.49
82 rdf:type schema:Person
83 sg:pub.10.1007/bf01013370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049857867
84 https://doi.org/10.1007/bf01013370
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01210613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015783977
87 https://doi.org/10.1007/bf01210613
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1002/cpa.3160280302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042063001
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1051/jphys:0198500460101700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056991183
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1051/jphyslet:019850046019090900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057009892
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1051/jphyslet:01985004606022300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057009958
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physreva.16.732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466807
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physreva.34.5091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060475393
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physreva.36.5465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060476906
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevb.24.2613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060529350
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.34.6409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060541402
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevlett.54.2026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791432
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.55.2924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792547
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.56.472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793489
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.56.889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793614
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.58.2087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794973
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1209/0295-5075/4/6/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230938
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
120 schema:name Institute for Theoretical Physics, University of California, 93106, Santa Barbara, California
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...