Fluctuation-induced couplings between defect lines or particle chains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-12

AUTHORS

Thomas C. Halsey, Will Toor

ABSTRACT

One-dimensional structures such as defect lines or chains of dipolar particles are generally subject to strong Landau-Peierls thermal fluctuations. Coupling between these fluctuations in parallel lines may lead to an attractive force, analogous to the London force, or to a repulsive force of entropic origin. We analyze these forces for chains of electric dipoles and for flux lines in isotropic superconductors. In the first case the force is attractive, and can significantly change the Hamaker constant, which governs the attraction between colloidal particles. In the second case, over much of the magnetic field-temperature phase diagram the force is repulsive, and dominates over the direct repulsive interaction between flux lines. More... »

PAGES

1257-1281

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01014374

DOI

http://dx.doi.org/10.1007/bf01014374

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047342115


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Boston University, 02215, Boston, Massachusetts", 
          "id": "http://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Physics, Boston University, 02215, Boston, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halsey", 
        "givenName": "Thomas C.", 
        "id": "sg:person.07417417117.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417417117.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "James Franck Institute and Department of Physics, University of Chicago, 60637, Chicago, Illinois", 
          "id": "http://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "James Franck Institute and Department of Physics, University of Chicago, 60637, Chicago, Illinois"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toor", 
        "givenName": "Will", 
        "id": "sg:person.011052531715.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052531715.47"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1990-12", 
    "datePublishedReg": "1990-12-01", 
    "description": "One-dimensional structures such as defect lines or chains of dipolar particles are generally subject to strong Landau-Peierls thermal fluctuations. Coupling between these fluctuations in parallel lines may lead to an attractive force, analogous to the London force, or to a repulsive force of entropic origin. We analyze these forces for chains of electric dipoles and for flux lines in isotropic superconductors. In the first case the force is attractive, and can significantly change the Hamaker constant, which governs the attraction between colloidal particles. In the second case, over much of the magnetic field-temperature phase diagram the force is repulsive, and dominates over the direct repulsive interaction between flux lines.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01014374", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "keywords": [
      "flux lines", 
      "particle chains", 
      "colloidal particles", 
      "one-dimensional structure", 
      "field-temperature phase diagram", 
      "magnetic field-temperature phase diagram", 
      "Hamaker constant", 
      "force", 
      "defect lines", 
      "repulsive forces", 
      "particles", 
      "attractive force", 
      "thermal fluctuations", 
      "electric dipole", 
      "phase diagram", 
      "dipolar particles", 
      "fluctuations", 
      "superconductors", 
      "isotropic superconductors", 
      "London forces", 
      "second case", 
      "entropic origin", 
      "parallel lines", 
      "structure", 
      "direct repulsive interaction", 
      "diagram", 
      "repulsive interactions", 
      "coupling", 
      "dipole", 
      "lines", 
      "constants", 
      "cases", 
      "chain", 
      "interaction", 
      "first case", 
      "attraction", 
      "origin", 
      "strong Landau-Peierls thermal fluctuations", 
      "Landau-Peierls thermal fluctuations", 
      "Fluctuation-induced couplings"
    ], 
    "name": "Fluctuation-induced couplings between defect lines or particle chains", 
    "pagination": "1257-1281", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047342115"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01014374"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01014374", 
      "https://app.dimensions.ai/details/publication/pub.1047342115"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_229.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01014374"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01014374'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01014374'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01014374'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01014374'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      66 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01014374 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N95b75fd7d98e4a2780ba917e05452b99
4 schema:datePublished 1990-12
5 schema:datePublishedReg 1990-12-01
6 schema:description One-dimensional structures such as defect lines or chains of dipolar particles are generally subject to strong Landau-Peierls thermal fluctuations. Coupling between these fluctuations in parallel lines may lead to an attractive force, analogous to the London force, or to a repulsive force of entropic origin. We analyze these forces for chains of electric dipoles and for flux lines in isotropic superconductors. In the first case the force is attractive, and can significantly change the Hamaker constant, which governs the attraction between colloidal particles. In the second case, over much of the magnetic field-temperature phase diagram the force is repulsive, and dominates over the direct repulsive interaction between flux lines.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N1f7a69083ddb471cbf7a9f7ceac2ddab
11 N648b06506ae14d7c82ab1417f7299139
12 sg:journal.1040979
13 schema:keywords Fluctuation-induced couplings
14 Hamaker constant
15 Landau-Peierls thermal fluctuations
16 London forces
17 attraction
18 attractive force
19 cases
20 chain
21 colloidal particles
22 constants
23 coupling
24 defect lines
25 diagram
26 dipolar particles
27 dipole
28 direct repulsive interaction
29 electric dipole
30 entropic origin
31 field-temperature phase diagram
32 first case
33 fluctuations
34 flux lines
35 force
36 interaction
37 isotropic superconductors
38 lines
39 magnetic field-temperature phase diagram
40 one-dimensional structure
41 origin
42 parallel lines
43 particle chains
44 particles
45 phase diagram
46 repulsive forces
47 repulsive interactions
48 second case
49 strong Landau-Peierls thermal fluctuations
50 structure
51 superconductors
52 thermal fluctuations
53 schema:name Fluctuation-induced couplings between defect lines or particle chains
54 schema:pagination 1257-1281
55 schema:productId Nb6c2c71fa8424486a30afd6ef2cbbcce
56 Ndba099da23044a19ad30ce541b26c48b
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047342115
58 https://doi.org/10.1007/bf01014374
59 schema:sdDatePublished 2021-12-01T19:07
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nd63196e81c8e4b30948d3c29806b2cab
62 schema:url https://doi.org/10.1007/bf01014374
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N1f7a69083ddb471cbf7a9f7ceac2ddab schema:volumeNumber 61
67 rdf:type schema:PublicationVolume
68 N648b06506ae14d7c82ab1417f7299139 schema:issueNumber 5-6
69 rdf:type schema:PublicationIssue
70 N95b75fd7d98e4a2780ba917e05452b99 rdf:first sg:person.07417417117.67
71 rdf:rest Nd3d0e602b5ec4810a93157cbcd76ff79
72 Nb6c2c71fa8424486a30afd6ef2cbbcce schema:name dimensions_id
73 schema:value pub.1047342115
74 rdf:type schema:PropertyValue
75 Nd3d0e602b5ec4810a93157cbcd76ff79 rdf:first sg:person.011052531715.47
76 rdf:rest rdf:nil
77 Nd63196e81c8e4b30948d3c29806b2cab schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Ndba099da23044a19ad30ce541b26c48b schema:name doi
80 schema:value 10.1007/bf01014374
81 rdf:type schema:PropertyValue
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Sciences
87 rdf:type schema:DefinedTerm
88 sg:journal.1040979 schema:issn 0022-4715
89 1572-9613
90 schema:name Journal of Statistical Physics
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.011052531715.47 schema:affiliation grid-institutes:grid.170205.1
94 schema:familyName Toor
95 schema:givenName Will
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052531715.47
97 rdf:type schema:Person
98 sg:person.07417417117.67 schema:affiliation grid-institutes:grid.189504.1
99 schema:familyName Halsey
100 schema:givenName Thomas C.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417417117.67
102 rdf:type schema:Person
103 grid-institutes:grid.170205.1 schema:alternateName James Franck Institute and Department of Physics, University of Chicago, 60637, Chicago, Illinois
104 schema:name James Franck Institute and Department of Physics, University of Chicago, 60637, Chicago, Illinois
105 rdf:type schema:Organization
106 grid-institutes:grid.189504.1 schema:alternateName Department of Physics, Boston University, 02215, Boston, Massachusetts
107 schema:name Department of Physics, Boston University, 02215, Boston, Massachusetts
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...