Generalized Lyapunov exponents in high-dimensional chaotic dynamics and products of large random matrices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-11

AUTHORS

Andrea Crisanti, Giovanni Paladin, Angelo Vulpiani

ABSTRACT

We study the behavior of the generalized Lyapunov exponents for chaotic symplectic dynamical systems and products of random matrices in the limit of large dimensionsD. For products of random matrices without any particular structure the generalized Lyapunov exponents become equal in this limit and the value of one of the generalized Lyapunov exponents is obtained by simple arguments. On the contrary, for random symplectic matrices with peculiar structures and for chaotic symplectic maps the generalized Lyapunov exponents remains different forD → ∞, indicating that high dimensionality cannot always destroy intermittency. More... »

PAGES

583-601

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01014215

DOI

http://dx.doi.org/10.1007/bf01014215

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001069362


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hebrew University of Jerusalem", 
          "id": "https://www.grid.ac/institutes/grid.9619.7", 
          "name": [
            "Racah Institute of Physics, Hebrew University, 91904, Jerusalem, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crisanti", 
        "givenName": "Andrea", 
        "id": "sg:person.01034617712.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034617712.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique Theorique de l'Ecole Normale Sup\u00e9rieure, 75231, Paris 05, France", 
            "Unit\u00e0 di Roma, GNSM-CISM, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paladin", 
        "givenName": "Giovanni", 
        "id": "sg:person.07526211325.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526211325.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Roma I", 
          "id": "https://www.grid.ac/institutes/grid.470218.8", 
          "name": [
            "Racah Institute of Physics, Hebrew University, 91904, Jerusalem, Israel", 
            "Unit\u00e0 di Roma, GNSM-CISM, Rome, Italy", 
            "INFN Sezione di Roma, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vulpiani", 
        "givenName": "Angelo", 
        "id": "sg:person.01352261626.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-1573(82)90045-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001761588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(82)90045-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001761588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01651505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003106879", 
          "https://doi.org/10.1007/bf01651505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01651505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003106879", 
          "https://doi.org/10.1007/bf01651505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(84)90278-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011375530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(84)90278-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011375530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(87)90110-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031137665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(87)90110-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031137665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02128236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053281450", 
          "https://doi.org/10.1007/bf02128236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02128236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053281450", 
          "https://doi.org/10.1007/bf02128236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074001881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053870049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074001881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053870049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:019840045080128300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056991125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1693226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057765006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.35.7164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060542829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.35.7164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060542829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.1895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.1895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.70.1264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063139190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176993291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064404615"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-11", 
    "datePublishedReg": "1988-11-01", 
    "description": "We study the behavior of the generalized Lyapunov exponents for chaotic symplectic dynamical systems and products of random matrices in the limit of large dimensionsD. For products of random matrices without any particular structure the generalized Lyapunov exponents become equal in this limit and the value of one of the generalized Lyapunov exponents is obtained by simple arguments. On the contrary, for random symplectic matrices with peculiar structures and for chaotic symplectic maps the generalized Lyapunov exponents remains different forD \u2192 \u221e, indicating that high dimensionality cannot always destroy intermittency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01014215", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Generalized Lyapunov exponents in high-dimensional chaotic dynamics and products of large random matrices", 
    "pagination": "583-601", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "05183a033b40da710a74b77896b858c70938ddd73e5452312f3f92e44e4d6436"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01014215"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001069362"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01014215", 
      "https://app.dimensions.ai/details/publication/pub.1001069362"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01014215"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01014215'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01014215'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01014215'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01014215'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01014215 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N59563e3ce0c3400591f0dfed01c4685c
4 schema:citation sg:pub.10.1007/bf01651505
5 sg:pub.10.1007/bf02128236
6 https://doi.org/10.1016/0167-2789(84)90278-1
7 https://doi.org/10.1016/0370-1573(82)90045-x
8 https://doi.org/10.1016/0370-1573(87)90110-4
9 https://doi.org/10.1017/s0022112074001881
10 https://doi.org/10.1051/jphys:019840045080128300
11 https://doi.org/10.1063/1.1693226
12 https://doi.org/10.1103/physrevb.35.7164
13 https://doi.org/10.1103/physrevlett.60.1895
14 https://doi.org/10.1143/ptp.70.1264
15 https://doi.org/10.1214/aop/1176993291
16 schema:datePublished 1988-11
17 schema:datePublishedReg 1988-11-01
18 schema:description We study the behavior of the generalized Lyapunov exponents for chaotic symplectic dynamical systems and products of random matrices in the limit of large dimensionsD. For products of random matrices without any particular structure the generalized Lyapunov exponents become equal in this limit and the value of one of the generalized Lyapunov exponents is obtained by simple arguments. On the contrary, for random symplectic matrices with peculiar structures and for chaotic symplectic maps the generalized Lyapunov exponents remains different forD → ∞, indicating that high dimensionality cannot always destroy intermittency.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N31c3ce6bf7a44ae9a9f38c7edff078fd
23 Nb00e9f1948114e46bc0f9deab9bbde5e
24 sg:journal.1040979
25 schema:name Generalized Lyapunov exponents in high-dimensional chaotic dynamics and products of large random matrices
26 schema:pagination 583-601
27 schema:productId N9205d152b03b4031890ebccaec8b89c7
28 Nb0e6f9830ec549edb4b0a1750c9f1129
29 Nd020eca58b29409384ec0230d8ff3dba
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001069362
31 https://doi.org/10.1007/bf01014215
32 schema:sdDatePublished 2019-04-10T14:05
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Naa9397caf2a747929e4cb607cb25013c
35 schema:url http://link.springer.com/10.1007/BF01014215
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N12b4d80d14044232892a64314f865cdf rdf:first sg:person.01352261626.07
40 rdf:rest rdf:nil
41 N31c3ce6bf7a44ae9a9f38c7edff078fd schema:volumeNumber 53
42 rdf:type schema:PublicationVolume
43 N59563e3ce0c3400591f0dfed01c4685c rdf:first sg:person.01034617712.80
44 rdf:rest N6624a341ed9c479faf4095b1f286d2d0
45 N5b0264ff8bd34d73b9d2a4a82448eacb schema:name Laboratoire de Physique Theorique de l'Ecole Normale Supérieure, 75231, Paris 05, France
46 Unità di Roma, GNSM-CISM, Rome, Italy
47 rdf:type schema:Organization
48 N6624a341ed9c479faf4095b1f286d2d0 rdf:first sg:person.07526211325.01
49 rdf:rest N12b4d80d14044232892a64314f865cdf
50 N9205d152b03b4031890ebccaec8b89c7 schema:name dimensions_id
51 schema:value pub.1001069362
52 rdf:type schema:PropertyValue
53 Naa9397caf2a747929e4cb607cb25013c schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nb00e9f1948114e46bc0f9deab9bbde5e schema:issueNumber 3-4
56 rdf:type schema:PublicationIssue
57 Nb0e6f9830ec549edb4b0a1750c9f1129 schema:name readcube_id
58 schema:value 05183a033b40da710a74b77896b858c70938ddd73e5452312f3f92e44e4d6436
59 rdf:type schema:PropertyValue
60 Nd020eca58b29409384ec0230d8ff3dba schema:name doi
61 schema:value 10.1007/bf01014215
62 rdf:type schema:PropertyValue
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
67 schema:name Statistics
68 rdf:type schema:DefinedTerm
69 sg:journal.1040979 schema:issn 0022-4715
70 1572-9613
71 schema:name Journal of Statistical Physics
72 rdf:type schema:Periodical
73 sg:person.01034617712.80 schema:affiliation https://www.grid.ac/institutes/grid.9619.7
74 schema:familyName Crisanti
75 schema:givenName Andrea
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034617712.80
77 rdf:type schema:Person
78 sg:person.01352261626.07 schema:affiliation https://www.grid.ac/institutes/grid.470218.8
79 schema:familyName Vulpiani
80 schema:givenName Angelo
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07
82 rdf:type schema:Person
83 sg:person.07526211325.01 schema:affiliation N5b0264ff8bd34d73b9d2a4a82448eacb
84 schema:familyName Paladin
85 schema:givenName Giovanni
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526211325.01
87 rdf:type schema:Person
88 sg:pub.10.1007/bf01651505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003106879
89 https://doi.org/10.1007/bf01651505
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf02128236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053281450
92 https://doi.org/10.1007/bf02128236
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0167-2789(84)90278-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011375530
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0370-1573(82)90045-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001761588
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0370-1573(87)90110-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031137665
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1017/s0022112074001881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053870049
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1051/jphys:019840045080128300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056991125
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.1693226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057765006
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevb.35.7164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060542829
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physrevlett.60.1895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796898
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1143/ptp.70.1264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063139190
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1214/aop/1176993291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404615
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.470218.8 schema:alternateName INFN Sezione di Roma I
115 schema:name INFN Sezione di Roma, Roma, Italy
116 Racah Institute of Physics, Hebrew University, 91904, Jerusalem, Israel
117 Unità di Roma, GNSM-CISM, Rome, Italy
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.9619.7 schema:alternateName Hebrew University of Jerusalem
120 schema:name Racah Institute of Physics, Hebrew University, 91904, Jerusalem, Israel
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...