Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-10

AUTHORS

D. F. Escande, F. Doveil

ABSTRACT

An approximate renormalization procedure is derived for the HamiltonianH(v,x,t)=v2/2−M cosx−P cosk(x−t). It gives an estimate of the large scale stochastic instability threshold which agrees within 5–10% with the results obtained from direct numerical integration of the canonical equations. It shows that this instability is related to the destruction of KAM tori between the two resonances and makes the connection with KAM theory. Possible improvements of the method are proposed. The results obtained forH allow us to estimate the threshold for a large class of Hamiltonian systems with two degrees of freedom. More... »

PAGES

257-284

Journal

TITLE

Journal of Statistical Physics

ISSUE

2

VOLUME

26

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01013171

DOI

http://dx.doi.org/10.1007/bf01013171

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045217896


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique", 
          "id": "https://www.grid.ac/institutes/grid.10877.39", 
          "name": [
            "Laboratoire de Physique des Milieux Ionis\u00e9s, Ecole Polytechnique, 91128, Palaiseau C\u00e9dex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Escande", 
        "givenName": "D. F.", 
        "id": "sg:person.01243642262.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243642262.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique", 
          "id": "https://www.grid.ac/institutes/grid.10877.39", 
          "name": [
            "Laboratoire de Physique des Milieux Ionis\u00e9s, Ecole Polytechnique, 91128, Palaiseau C\u00e9dex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doveil", 
        "givenName": "F.", 
        "id": "sg:person.0653556324.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653556324.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-1573(79)90023-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014649535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(79)90023-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014649535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.524170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058101190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.862163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058115360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.35.1306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060779499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.35.1306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060779499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.47.773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.47.773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838809"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-10", 
    "datePublishedReg": "1981-10-01", 
    "description": "An approximate renormalization procedure is derived for the HamiltonianH(v,x,t)=v2/2\u2212M cosx\u2212P cosk(x\u2212t). It gives an estimate of the large scale stochastic instability threshold which agrees within 5\u201310% with the results obtained from direct numerical integration of the canonical equations. It shows that this instability is related to the destruction of KAM tori between the two resonances and makes the connection with KAM theory. Possible improvements of the method are proposed. The results obtained forH allow us to estimate the threshold for a large class of Hamiltonian systems with two degrees of freedom.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01013171", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems", 
    "pagination": "257-284", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d7638e8094ebf01e984849d702cccb301cdbf79eaa8e5c30184c0e011612efd4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01013171"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045217896"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01013171", 
      "https://app.dimensions.ai/details/publication/pub.1045217896"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01013171"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01013171'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01013171'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01013171'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01013171'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01013171 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ned131a55157d44c7a49a67eff79a2190
4 schema:citation https://doi.org/10.1016/0370-1573(79)90023-1
5 https://doi.org/10.1063/1.524170
6 https://doi.org/10.1063/1.862163
7 https://doi.org/10.1103/physrevlett.35.1306
8 https://doi.org/10.1103/revmodphys.47.773
9 schema:datePublished 1981-10
10 schema:datePublishedReg 1981-10-01
11 schema:description An approximate renormalization procedure is derived for the HamiltonianH(v,x,t)=v2/2−M cosx−P cosk(x−t). It gives an estimate of the large scale stochastic instability threshold which agrees within 5–10% with the results obtained from direct numerical integration of the canonical equations. It shows that this instability is related to the destruction of KAM tori between the two resonances and makes the connection with KAM theory. Possible improvements of the method are proposed. The results obtained forH allow us to estimate the threshold for a large class of Hamiltonian systems with two degrees of freedom.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N48b8100033fe49788e9a2169a90abf38
16 Nef893cfe3f454bb5888fc241beca1333
17 sg:journal.1040979
18 schema:name Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems
19 schema:pagination 257-284
20 schema:productId N904786b8f2ff495abe8cb217b66440ad
21 Ndb28bb91dbf24b6cbea4c58b70195059
22 Ne0da4e7f8ff5459ea1382655e99ddb34
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045217896
24 https://doi.org/10.1007/bf01013171
25 schema:sdDatePublished 2019-04-10T15:48
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Na03d61716777401db9adb45e2a677e0a
28 schema:url http://link.springer.com/10.1007/BF01013171
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N48b8100033fe49788e9a2169a90abf38 schema:volumeNumber 26
33 rdf:type schema:PublicationVolume
34 N904786b8f2ff495abe8cb217b66440ad schema:name doi
35 schema:value 10.1007/bf01013171
36 rdf:type schema:PropertyValue
37 Na03d61716777401db9adb45e2a677e0a schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 Nd3804e60aa0a4694b30d75fb51768f6f rdf:first sg:person.0653556324.21
40 rdf:rest rdf:nil
41 Ndb28bb91dbf24b6cbea4c58b70195059 schema:name dimensions_id
42 schema:value pub.1045217896
43 rdf:type schema:PropertyValue
44 Ne0da4e7f8ff5459ea1382655e99ddb34 schema:name readcube_id
45 schema:value d7638e8094ebf01e984849d702cccb301cdbf79eaa8e5c30184c0e011612efd4
46 rdf:type schema:PropertyValue
47 Ned131a55157d44c7a49a67eff79a2190 rdf:first sg:person.01243642262.71
48 rdf:rest Nd3804e60aa0a4694b30d75fb51768f6f
49 Nef893cfe3f454bb5888fc241beca1333 schema:issueNumber 2
50 rdf:type schema:PublicationIssue
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
55 schema:name Statistics
56 rdf:type schema:DefinedTerm
57 sg:journal.1040979 schema:issn 0022-4715
58 1572-9613
59 schema:name Journal of Statistical Physics
60 rdf:type schema:Periodical
61 sg:person.01243642262.71 schema:affiliation https://www.grid.ac/institutes/grid.10877.39
62 schema:familyName Escande
63 schema:givenName D. F.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243642262.71
65 rdf:type schema:Person
66 sg:person.0653556324.21 schema:affiliation https://www.grid.ac/institutes/grid.10877.39
67 schema:familyName Doveil
68 schema:givenName F.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653556324.21
70 rdf:type schema:Person
71 https://doi.org/10.1016/0370-1573(79)90023-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014649535
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1063/1.524170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058101190
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1063/1.862163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058115360
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1103/physrevlett.35.1306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060779499
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1103/revmodphys.47.773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838809
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.10877.39 schema:alternateName École Polytechnique
82 schema:name Laboratoire de Physique des Milieux Ionisés, Ecole Polytechnique, 91128, Palaiseau Cédex, France
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...