Non-Markoffian diffusion in a one-dimensional disordered lattice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-05

AUTHORS

Robert Zwanzig

ABSTRACT

Recent treatments of diffusion in a one-dimensional disordered lattice by Machta using a renormalization-group approach, and by Alexander and Orbach using an effective medium approach, lead to a frequency-dependent (or non-Markoffian) diffusion coefficient. Their results are confirmed by a direct calculation of the diffusion coefficient.

PAGES

127-133

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01011627

DOI

http://dx.doi.org/10.1007/bf01011627

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015381872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Institute for Physical Science and Technology, University of Maryland, 20742, College Park, Maryland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zwanzig", 
        "givenName": "Robert", 
        "id": "sg:person.010730123041.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730123041.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.24.5260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.24.5260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.53.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.53.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838971"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982-05", 
    "datePublishedReg": "1982-05-01", 
    "description": "Recent treatments of diffusion in a one-dimensional disordered lattice by Machta using a renormalization-group approach, and by Alexander and Orbach using an effective medium approach, lead to a frequency-dependent (or non-Markoffian) diffusion coefficient. Their results are confirmed by a direct calculation of the diffusion coefficient.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01011627", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Non-Markoffian diffusion in a one-dimensional disordered lattice", 
    "pagination": "127-133", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "494a0027f98a996dbb3ee24c68a9409c19cc2ec2779532056ce5a24f47590ead"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01011627"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015381872"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01011627", 
      "https://app.dimensions.ai/details/publication/pub.1015381872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01011627"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01011627'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01011627'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01011627'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01011627'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01011627 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N39dc251e233e4262ad66777be5242e68
4 schema:citation https://doi.org/10.1103/physrevb.24.5260
5 https://doi.org/10.1103/revmodphys.53.175
6 schema:datePublished 1982-05
7 schema:datePublishedReg 1982-05-01
8 schema:description Recent treatments of diffusion in a one-dimensional disordered lattice by Machta using a renormalization-group approach, and by Alexander and Orbach using an effective medium approach, lead to a frequency-dependent (or non-Markoffian) diffusion coefficient. Their results are confirmed by a direct calculation of the diffusion coefficient.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N0379b337a811420093721c305c9562e8
13 N6bb4f63106af49548272a3b28aea494e
14 sg:journal.1040979
15 schema:name Non-Markoffian diffusion in a one-dimensional disordered lattice
16 schema:pagination 127-133
17 schema:productId N2957c57d2f2a4cf78e05ff035725fa96
18 N3afced38a0d649318ab4da9e80ac9eb3
19 Nfdac470d5ca646aaa971abe290d49877
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015381872
21 https://doi.org/10.1007/bf01011627
22 schema:sdDatePublished 2019-04-10T20:43
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N14c228e2121742a6856e1c176970d8a6
25 schema:url http://link.springer.com/10.1007/BF01011627
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N0379b337a811420093721c305c9562e8 schema:issueNumber 1
30 rdf:type schema:PublicationIssue
31 N14c228e2121742a6856e1c176970d8a6 schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N2957c57d2f2a4cf78e05ff035725fa96 schema:name readcube_id
34 schema:value 494a0027f98a996dbb3ee24c68a9409c19cc2ec2779532056ce5a24f47590ead
35 rdf:type schema:PropertyValue
36 N39dc251e233e4262ad66777be5242e68 rdf:first sg:person.010730123041.53
37 rdf:rest rdf:nil
38 N3afced38a0d649318ab4da9e80ac9eb3 schema:name doi
39 schema:value 10.1007/bf01011627
40 rdf:type schema:PropertyValue
41 N6bb4f63106af49548272a3b28aea494e schema:volumeNumber 28
42 rdf:type schema:PublicationVolume
43 Nfdac470d5ca646aaa971abe290d49877 schema:name dimensions_id
44 schema:value pub.1015381872
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1040979 schema:issn 0022-4715
53 1572-9613
54 schema:name Journal of Statistical Physics
55 rdf:type schema:Periodical
56 sg:person.010730123041.53 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
57 schema:familyName Zwanzig
58 schema:givenName Robert
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730123041.53
60 rdf:type schema:Person
61 https://doi.org/10.1103/physrevb.24.5260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060529723
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1103/revmodphys.53.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838971
64 rdf:type schema:CreativeWork
65 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
66 schema:name Institute for Physical Science and Technology, University of Maryland, 20742, College Park, Maryland
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...