Non-Markoffian diffusion in a one-dimensional disordered lattice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-05

AUTHORS

Robert Zwanzig

ABSTRACT

Recent treatments of diffusion in a one-dimensional disordered lattice by Machta using a renormalization-group approach, and by Alexander and Orbach using an effective medium approach, lead to a frequency-dependent (or non-Markoffian) diffusion coefficient. Their results are confirmed by a direct calculation of the diffusion coefficient.

PAGES

127-133

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01011627

DOI

http://dx.doi.org/10.1007/bf01011627

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015381872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Institute for Physical Science and Technology, University of Maryland, 20742, College Park, Maryland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zwanzig", 
        "givenName": "Robert", 
        "id": "sg:person.010730123041.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730123041.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.24.5260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.24.5260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.53.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.53.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838971"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982-05", 
    "datePublishedReg": "1982-05-01", 
    "description": "Recent treatments of diffusion in a one-dimensional disordered lattice by Machta using a renormalization-group approach, and by Alexander and Orbach using an effective medium approach, lead to a frequency-dependent (or non-Markoffian) diffusion coefficient. Their results are confirmed by a direct calculation of the diffusion coefficient.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01011627", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Non-Markoffian diffusion in a one-dimensional disordered lattice", 
    "pagination": "127-133", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "494a0027f98a996dbb3ee24c68a9409c19cc2ec2779532056ce5a24f47590ead"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01011627"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015381872"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01011627", 
      "https://app.dimensions.ai/details/publication/pub.1015381872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01011627"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01011627'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01011627'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01011627'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01011627'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01011627 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N25f15ed5886a4c6fa9e72f3b2dbf11d2
4 schema:citation https://doi.org/10.1103/physrevb.24.5260
5 https://doi.org/10.1103/revmodphys.53.175
6 schema:datePublished 1982-05
7 schema:datePublishedReg 1982-05-01
8 schema:description Recent treatments of diffusion in a one-dimensional disordered lattice by Machta using a renormalization-group approach, and by Alexander and Orbach using an effective medium approach, lead to a frequency-dependent (or non-Markoffian) diffusion coefficient. Their results are confirmed by a direct calculation of the diffusion coefficient.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N0478b19bb8694c7db7438cc77515793b
13 N952eaf00abb5475dbc3321791dac0ccf
14 sg:journal.1040979
15 schema:name Non-Markoffian diffusion in a one-dimensional disordered lattice
16 schema:pagination 127-133
17 schema:productId N167d79a0ed0a4eaa93fc8a95d6de2e41
18 N2e3ea5d282db498782f84d9a1daa8a8b
19 Nc35157aceabf4eafa4bf9d23b564c7a9
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015381872
21 https://doi.org/10.1007/bf01011627
22 schema:sdDatePublished 2019-04-10T20:43
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Nf0f000aa19354b359fe95de987490655
25 schema:url http://link.springer.com/10.1007/BF01011627
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N0478b19bb8694c7db7438cc77515793b schema:volumeNumber 28
30 rdf:type schema:PublicationVolume
31 N167d79a0ed0a4eaa93fc8a95d6de2e41 schema:name dimensions_id
32 schema:value pub.1015381872
33 rdf:type schema:PropertyValue
34 N25f15ed5886a4c6fa9e72f3b2dbf11d2 rdf:first sg:person.010730123041.53
35 rdf:rest rdf:nil
36 N2e3ea5d282db498782f84d9a1daa8a8b schema:name doi
37 schema:value 10.1007/bf01011627
38 rdf:type schema:PropertyValue
39 N952eaf00abb5475dbc3321791dac0ccf schema:issueNumber 1
40 rdf:type schema:PublicationIssue
41 Nc35157aceabf4eafa4bf9d23b564c7a9 schema:name readcube_id
42 schema:value 494a0027f98a996dbb3ee24c68a9409c19cc2ec2779532056ce5a24f47590ead
43 rdf:type schema:PropertyValue
44 Nf0f000aa19354b359fe95de987490655 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1040979 schema:issn 0022-4715
53 1572-9613
54 schema:name Journal of Statistical Physics
55 rdf:type schema:Periodical
56 sg:person.010730123041.53 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
57 schema:familyName Zwanzig
58 schema:givenName Robert
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010730123041.53
60 rdf:type schema:Person
61 https://doi.org/10.1103/physrevb.24.5260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060529723
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1103/revmodphys.53.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838971
64 rdf:type schema:CreativeWork
65 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
66 schema:name Institute for Physical Science and Technology, University of Maryland, 20742, College Park, Maryland
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...