Infinite clusters in percolation models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-11

AUTHORS

C. M. Newman, L. S. Schulman

ABSTRACT

The qualitative nature of infinite clusters in percolation models is investigated. The results, which apply to both independent and correlated percolation in any dimension, concern the number and density of infinite clusters, the size of their external surface, the value of their (total) surface-to-volume ratio, and the fluctuations in their density. In particular it is shown thatN0, the number of distinct infinite clusters, is either 0, 1, or ∞ and the caseN0=∞ (which might occur in sufficiently high dimension) is analyzed. More... »

PAGES

613-628

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01011437

DOI

http://dx.doi.org/10.1007/bf01011437

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053058282


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Mathematics Department, University of Arizona, 85721, Tucson, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Newman", 
        "givenName": "C. M.", 
        "id": "sg:person.010260645765.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010260645765.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Physics, Technion, Haifa, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulman", 
        "givenName": "L. S.", 
        "id": "sg:person.010275521604.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01197754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004608961", 
          "https://doi.org/10.1007/bf01197754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01197754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004608961", 
          "https://doi.org/10.1007/bf01197754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01020335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008209604", 
          "https://doi.org/10.1007/bf01020335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(79)90060-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008331207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(79)90060-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008331207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01651330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019334545", 
          "https://doi.org/10.1007/bf01651330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01651330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019334545", 
          "https://doi.org/10.1007/bf01651330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1674394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057750853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1703746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057773692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.5046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.5046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.36.921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060780479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.36.921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060780479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-39-00501-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064415970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675189"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-11", 
    "datePublishedReg": "1981-11-01", 
    "description": "The qualitative nature of infinite clusters in percolation models is investigated. The results, which apply to both independent and correlated percolation in any dimension, concern the number and density of infinite clusters, the size of their external surface, the value of their (total) surface-to-volume ratio, and the fluctuations in their density. In particular it is shown thatN0, the number of distinct infinite clusters, is either 0, 1, or \u221e and the caseN0=\u221e (which might occur in sufficiently high dimension) is analyzed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01011437", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Infinite clusters in percolation models", 
    "pagination": "613-628", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fcbadf85a7df99523dada24f9518d9fd31a6077d297c81ecda33e63e671101d2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01011437"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053058282"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01011437", 
      "https://app.dimensions.ai/details/publication/pub.1053058282"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01011437"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01011437'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01011437'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01011437'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01011437'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01011437 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N254b855c747548e380ef2171a6b5ad73
4 schema:citation sg:pub.10.1007/bf01020335
5 sg:pub.10.1007/bf01197754
6 sg:pub.10.1007/bf01651330
7 https://doi.org/10.1016/0370-1573(79)90060-7
8 https://doi.org/10.1063/1.1674394
9 https://doi.org/10.1063/1.1703746
10 https://doi.org/10.1103/physrevb.14.5046
11 https://doi.org/10.1103/physrevlett.36.921
12 https://doi.org/10.1215/s0012-7094-39-00501-6
13 https://doi.org/10.2307/1969828
14 schema:datePublished 1981-11
15 schema:datePublishedReg 1981-11-01
16 schema:description The qualitative nature of infinite clusters in percolation models is investigated. The results, which apply to both independent and correlated percolation in any dimension, concern the number and density of infinite clusters, the size of their external surface, the value of their (total) surface-to-volume ratio, and the fluctuations in their density. In particular it is shown thatN0, the number of distinct infinite clusters, is either 0, 1, or ∞ and the caseN0=∞ (which might occur in sufficiently high dimension) is analyzed.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N21428d2628724cde87a607944c8408a1
21 N3b733251290c43038c674045456c1d9a
22 sg:journal.1040979
23 schema:name Infinite clusters in percolation models
24 schema:pagination 613-628
25 schema:productId N3acd2c72ac0a46dda252bb7762feccf1
26 N8031d194a7ad49f69c81a97e3de9f49d
27 Nd86de33f15e3447595527a4418b1b44a
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053058282
29 https://doi.org/10.1007/bf01011437
30 schema:sdDatePublished 2019-04-10T23:21
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N89f10fdd2f8e44378007bc56d92b55f4
33 schema:url http://link.springer.com/10.1007/BF01011437
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N1abca77bfcf647818d3f984993dcca77 rdf:first sg:person.010275521604.97
38 rdf:rest rdf:nil
39 N21428d2628724cde87a607944c8408a1 schema:volumeNumber 26
40 rdf:type schema:PublicationVolume
41 N254b855c747548e380ef2171a6b5ad73 rdf:first sg:person.010260645765.91
42 rdf:rest N1abca77bfcf647818d3f984993dcca77
43 N3acd2c72ac0a46dda252bb7762feccf1 schema:name dimensions_id
44 schema:value pub.1053058282
45 rdf:type schema:PropertyValue
46 N3b733251290c43038c674045456c1d9a schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 N8031d194a7ad49f69c81a97e3de9f49d schema:name readcube_id
49 schema:value fcbadf85a7df99523dada24f9518d9fd31a6077d297c81ecda33e63e671101d2
50 rdf:type schema:PropertyValue
51 N89f10fdd2f8e44378007bc56d92b55f4 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Nd86de33f15e3447595527a4418b1b44a schema:name doi
54 schema:value 10.1007/bf01011437
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1040979 schema:issn 0022-4715
63 1572-9613
64 schema:name Journal of Statistical Physics
65 rdf:type schema:Periodical
66 sg:person.010260645765.91 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
67 schema:familyName Newman
68 schema:givenName C. M.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010260645765.91
70 rdf:type schema:Person
71 sg:person.010275521604.97 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
72 schema:familyName Schulman
73 schema:givenName L. S.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97
75 rdf:type schema:Person
76 sg:pub.10.1007/bf01020335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008209604
77 https://doi.org/10.1007/bf01020335
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01197754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004608961
80 https://doi.org/10.1007/bf01197754
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01651330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019334545
83 https://doi.org/10.1007/bf01651330
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0370-1573(79)90060-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008331207
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1063/1.1674394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057750853
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1063/1.1703746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057773692
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physrevb.14.5046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521842
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physrevlett.36.921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060780479
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1215/s0012-7094-39-00501-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415970
96 rdf:type schema:CreativeWork
97 https://doi.org/10.2307/1969828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675189
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
100 schema:name Mathematics Department, University of Arizona, 85721, Tucson, Arizona, USA
101 rdf:type schema:Organization
102 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
103 schema:name Department of Physics, Technion, Haifa, Israel
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...