On the weak-noise limit of Fokker-Planck models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-06

AUTHORS

R. Graham, T. Tél

ABSTRACT

The weak-noise limit of Fokker-Planck models leads to a set of nonlinear Hamiltonian canonical equations. We show that the existence of a nonequilibrium potential in the weak-noise limit requires the existence of whiskered tori in the Hamiltonian system and, therefore, the complete integrability of the latter. A specific model is considered, where the Hamiltonian system in the weak-noise limit is not integrable. Two different perturbative solutions are constructed: the first solution describes analytically the breakdown of the whiskered tori due to the appearance of wild séparatrices; the second solution allows the analytic construction of an approximate nonequilibrium potential and an asymptotic expression for the probability density in the steady state. More... »

PAGES

729-748

Journal

TITLE

Journal of Statistical Physics

ISSUE

5-6

VOLUME

35

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01010830

DOI

http://dx.doi.org/10.1007/bf01010830

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035738006


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Duisburg-Essen", 
          "id": "https://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Fachbereich Physik, Universit\u00e4t Essen, D-4300, Essen 1, West Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graham", 
        "givenName": "R.", 
        "id": "sg:person.010206533115.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010206533115.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Duisburg-Essen", 
          "id": "https://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Fachbereich Physik, Universit\u00e4t Essen, D-4300, Essen 1, West Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00e9l", 
        "givenName": "T.", 
        "id": "sg:person.0663663040.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663663040.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-1573(82)90045-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001761588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(82)90045-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001761588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(57)90002-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041089800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/im1974v008n05abeh002139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058166648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1970v025n01abeh001254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058193936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.23.1302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060469086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.23.1302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060469086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.26.2805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.26.2805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1017070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062860897"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-06", 
    "datePublishedReg": "1984-06-01", 
    "description": "The weak-noise limit of Fokker-Planck models leads to a set of nonlinear Hamiltonian canonical equations. We show that the existence of a nonequilibrium potential in the weak-noise limit requires the existence of whiskered tori in the Hamiltonian system and, therefore, the complete integrability of the latter. A specific model is considered, where the Hamiltonian system in the weak-noise limit is not integrable. Two different perturbative solutions are constructed: the first solution describes analytically the breakdown of the whiskered tori due to the appearance of wild s\u00e9paratrices; the second solution allows the analytic construction of an approximate nonequilibrium potential and an asymptotic expression for the probability density in the steady state.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01010830", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "On the weak-noise limit of Fokker-Planck models", 
    "pagination": "729-748", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aa3e1c3a982d35fce160f80feeb17d465faf46520183ed5dbcf0067ee5e241b7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01010830"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035738006"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01010830", 
      "https://app.dimensions.ai/details/publication/pub.1035738006"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01010830"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01010830'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01010830'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01010830'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01010830'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01010830 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N2af20b79fa204d9f972e11184d8b8e12
4 schema:citation https://doi.org/10.1016/0003-4916(57)90002-7
5 https://doi.org/10.1016/0370-1573(82)90045-x
6 https://doi.org/10.1070/im1974v008n05abeh002139
7 https://doi.org/10.1070/rm1970v025n01abeh001254
8 https://doi.org/10.1103/physreva.23.1302
9 https://doi.org/10.1103/physreva.26.2805
10 https://doi.org/10.1103/physrevlett.52.9
11 https://doi.org/10.1137/1017070
12 schema:datePublished 1984-06
13 schema:datePublishedReg 1984-06-01
14 schema:description The weak-noise limit of Fokker-Planck models leads to a set of nonlinear Hamiltonian canonical equations. We show that the existence of a nonequilibrium potential in the weak-noise limit requires the existence of whiskered tori in the Hamiltonian system and, therefore, the complete integrability of the latter. A specific model is considered, where the Hamiltonian system in the weak-noise limit is not integrable. Two different perturbative solutions are constructed: the first solution describes analytically the breakdown of the whiskered tori due to the appearance of wild séparatrices; the second solution allows the analytic construction of an approximate nonequilibrium potential and an asymptotic expression for the probability density in the steady state.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N77e7f95092a6490a82e8111bb6c22742
19 Nee7f30aabe5140298afdc9d4b687d1ca
20 sg:journal.1040979
21 schema:name On the weak-noise limit of Fokker-Planck models
22 schema:pagination 729-748
23 schema:productId N0b6b9285906b4b6e8f2b897bb74f8f3c
24 N8ce14fcb5bd84e16be9182fa04cabce8
25 Nd9d01121e0d246b09b39403f735b84ed
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035738006
27 https://doi.org/10.1007/bf01010830
28 schema:sdDatePublished 2019-04-10T22:28
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N1c5565c3ae2a49edba0b3d19d6134ddb
31 schema:url http://link.springer.com/10.1007/BF01010830
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0b6b9285906b4b6e8f2b897bb74f8f3c schema:name dimensions_id
36 schema:value pub.1035738006
37 rdf:type schema:PropertyValue
38 N1c5565c3ae2a49edba0b3d19d6134ddb schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N244fe28f6f12436eb45301d48448a3f1 rdf:first sg:person.0663663040.34
41 rdf:rest rdf:nil
42 N2af20b79fa204d9f972e11184d8b8e12 rdf:first sg:person.010206533115.28
43 rdf:rest N244fe28f6f12436eb45301d48448a3f1
44 N77e7f95092a6490a82e8111bb6c22742 schema:issueNumber 5-6
45 rdf:type schema:PublicationIssue
46 N8ce14fcb5bd84e16be9182fa04cabce8 schema:name readcube_id
47 schema:value aa3e1c3a982d35fce160f80feeb17d465faf46520183ed5dbcf0067ee5e241b7
48 rdf:type schema:PropertyValue
49 Nd9d01121e0d246b09b39403f735b84ed schema:name doi
50 schema:value 10.1007/bf01010830
51 rdf:type schema:PropertyValue
52 Nee7f30aabe5140298afdc9d4b687d1ca schema:volumeNumber 35
53 rdf:type schema:PublicationVolume
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
58 schema:name Statistics
59 rdf:type schema:DefinedTerm
60 sg:journal.1040979 schema:issn 0022-4715
61 1572-9613
62 schema:name Journal of Statistical Physics
63 rdf:type schema:Periodical
64 sg:person.010206533115.28 schema:affiliation https://www.grid.ac/institutes/grid.5718.b
65 schema:familyName Graham
66 schema:givenName R.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010206533115.28
68 rdf:type schema:Person
69 sg:person.0663663040.34 schema:affiliation https://www.grid.ac/institutes/grid.5718.b
70 schema:familyName Tél
71 schema:givenName T.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663663040.34
73 rdf:type schema:Person
74 https://doi.org/10.1016/0003-4916(57)90002-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041089800
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/0370-1573(82)90045-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001761588
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1070/im1974v008n05abeh002139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058166648
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1070/rm1970v025n01abeh001254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058193936
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physreva.23.1302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060469086
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physreva.26.2805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060470542
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physrevlett.52.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790310
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1137/1017070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062860897
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.5718.b schema:alternateName University of Duisburg-Essen
91 schema:name Fachbereich Physik, Universität Essen, D-4300, Essen 1, West Germany
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...