Phase transitions in two-dimensional uniformly frustratedXY models. I. Antiferromagnetic model on a triangular lattice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-04

AUTHORS

S. E. Korshunov, G. V. Uimin

ABSTRACT

A most popular model in the family of two-dimensional uniformly-frustratedXY models is the antiferromagnetic model on a triangular lattice [AFXY(t) model]. Its ground state is both continuously and twofold discretely degenerated. Different phase transitions possible in such systems are investigated. Relevant topological excitations are analyzed and a new class of such (vortices with a fractional number of circulation quanta) is discovered. Their role in determining the properties of the system proves itself essential. The characteristics of phase transitions related to breaking of discrete and continuous symmetries change. The phase diagram of the “generalized” AFXY(t) model is constructed. The results obtained are rederived in the representation of the Coulomb gas with half-integer charges, equivalent to the AFXY(t) model with the Berezinskii-Villain interaction. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01010569

DOI

http://dx.doi.org/10.1007/bf01010569

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035352128


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "L. D. Landau Institute for Theoretical Physics, Academy of Sciences of the USSR, Kosygina 2, 117940, Moscow, USSR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korshunov", 
        "givenName": "S. E.", 
        "id": "sg:person.013670465614.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013670465614.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "L. D. Landau Institute for Theoretical Physics, Academy of Sciences of the USSR, Kosygina 2, 117940, Moscow, USSR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uimin", 
        "givenName": "G. V.", 
        "id": "sg:person.010013727215.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010013727215.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0038-1098(81)90749-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034437396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(81)90749-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034437396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:01975003606058100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056989472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.158.383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.158.383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.16.1217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060522727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.16.1217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060522727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.18.4789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060524479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.18.4789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060524479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.25.3446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060530388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.25.3446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060530388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.5625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.5625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.6575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.6575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.6578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.6578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.29.1487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.29.1487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.29.2680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060534169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.29.2680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060534169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.6774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060536498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.6774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060536498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.1959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.1959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.1999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.1999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.53.1145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063107643"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-04", 
    "datePublishedReg": "1986-04-01", 
    "description": "A most popular model in the family of two-dimensional uniformly-frustratedXY models is the antiferromagnetic model on a triangular lattice [AFXY(t) model]. Its ground state is both continuously and twofold discretely degenerated. Different phase transitions possible in such systems are investigated. Relevant topological excitations are analyzed and a new class of such (vortices with a fractional number of circulation quanta) is discovered. Their role in determining the properties of the system proves itself essential. The characteristics of phase transitions related to breaking of discrete and continuous symmetries change. The phase diagram of the \u201cgeneralized\u201d AFXY(t) model is constructed. The results obtained are rederived in the representation of the Coulomb gas with half-integer charges, equivalent to the AFXY(t) model with the Berezinskii-Villain interaction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01010569", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "Phase transitions in two-dimensional uniformly frustratedXY models. I. Antiferromagnetic model on a triangular lattice", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a8673daf2b48bd641250c9d6f4f82caa598b8765d60cbe784c71e280d3b7034a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01010569"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035352128"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01010569", 
      "https://app.dimensions.ai/details/publication/pub.1035352128"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01010569"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01010569'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01010569'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01010569'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01010569'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01010569 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na19993be031d4b52a4ed000fc68a48d9
4 schema:citation https://doi.org/10.1016/0038-1098(81)90749-3
5 https://doi.org/10.1051/jphys:01975003606058100
6 https://doi.org/10.1103/physrev.158.383
7 https://doi.org/10.1103/physrevb.16.1217
8 https://doi.org/10.1103/physrevb.18.4789
9 https://doi.org/10.1103/physrevb.25.3446
10 https://doi.org/10.1103/physrevb.27.5625
11 https://doi.org/10.1103/physrevb.27.598
12 https://doi.org/10.1103/physrevb.28.6575
13 https://doi.org/10.1103/physrevb.28.6578
14 https://doi.org/10.1103/physrevb.29.1487
15 https://doi.org/10.1103/physrevb.29.2680
16 https://doi.org/10.1103/physrevb.30.6774
17 https://doi.org/10.1103/physrevlett.17.1133
18 https://doi.org/10.1103/physrevlett.45.1959
19 https://doi.org/10.1103/physrevlett.51.1999
20 https://doi.org/10.1103/physrevlett.51.690
21 https://doi.org/10.1103/physrevlett.52.433
22 https://doi.org/10.1143/jpsj.53.1145
23 schema:datePublished 1986-04
24 schema:datePublishedReg 1986-04-01
25 schema:description A most popular model in the family of two-dimensional uniformly-frustratedXY models is the antiferromagnetic model on a triangular lattice [AFXY(t) model]. Its ground state is both continuously and twofold discretely degenerated. Different phase transitions possible in such systems are investigated. Relevant topological excitations are analyzed and a new class of such (vortices with a fractional number of circulation quanta) is discovered. Their role in determining the properties of the system proves itself essential. The characteristics of phase transitions related to breaking of discrete and continuous symmetries change. The phase diagram of the “generalized” AFXY(t) model is constructed. The results obtained are rederived in the representation of the Coulomb gas with half-integer charges, equivalent to the AFXY(t) model with the Berezinskii-Villain interaction.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N15c7e6ad878d4aaab93ad0a0d5b77f8b
30 N173eca9711594aeb8d9868ad8741c340
31 sg:journal.1040979
32 schema:name Phase transitions in two-dimensional uniformly frustratedXY models. I. Antiferromagnetic model on a triangular lattice
33 schema:pagination 1-16
34 schema:productId N13a7efd7a86e413d917802e15d36657c
35 N2756a38ae2c84159b14a9e798deb67af
36 N35d16e58be224fc38ef2afe56ac48014
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035352128
38 https://doi.org/10.1007/bf01010569
39 schema:sdDatePublished 2019-04-11T01:56
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nde50141ae2f04e3bb7b0af8331724057
42 schema:url http://link.springer.com/10.1007/BF01010569
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N13a7efd7a86e413d917802e15d36657c schema:name doi
47 schema:value 10.1007/bf01010569
48 rdf:type schema:PropertyValue
49 N15c7e6ad878d4aaab93ad0a0d5b77f8b schema:issueNumber 1-2
50 rdf:type schema:PublicationIssue
51 N173eca9711594aeb8d9868ad8741c340 schema:volumeNumber 43
52 rdf:type schema:PublicationVolume
53 N225544b566ea4508a1ebbc73a254871b rdf:first sg:person.010013727215.85
54 rdf:rest rdf:nil
55 N2756a38ae2c84159b14a9e798deb67af schema:name readcube_id
56 schema:value a8673daf2b48bd641250c9d6f4f82caa598b8765d60cbe784c71e280d3b7034a
57 rdf:type schema:PropertyValue
58 N35d16e58be224fc38ef2afe56ac48014 schema:name dimensions_id
59 schema:value pub.1035352128
60 rdf:type schema:PropertyValue
61 Na19993be031d4b52a4ed000fc68a48d9 rdf:first sg:person.013670465614.72
62 rdf:rest N225544b566ea4508a1ebbc73a254871b
63 Nde50141ae2f04e3bb7b0af8331724057 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1040979 schema:issn 0022-4715
72 1572-9613
73 schema:name Journal of Statistical Physics
74 rdf:type schema:Periodical
75 sg:person.010013727215.85 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
76 schema:familyName Uimin
77 schema:givenName G. V.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010013727215.85
79 rdf:type schema:Person
80 sg:person.013670465614.72 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
81 schema:familyName Korshunov
82 schema:givenName S. E.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013670465614.72
84 rdf:type schema:Person
85 https://doi.org/10.1016/0038-1098(81)90749-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034437396
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1051/jphys:01975003606058100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056989472
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1103/physrev.158.383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060435582
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physrevb.16.1217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060522727
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physrevb.18.4789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060524479
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevb.25.3446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060530388
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevb.27.5625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532506
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevb.27.598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532573
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevb.28.6575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533730
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevb.28.6578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533731
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.29.1487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533985
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.29.2680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060534169
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevb.30.6774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060536498
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.17.1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769116
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.45.1959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785531
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.51.1999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789272
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.51.690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789544
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.52.433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790156
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1143/jpsj.53.1145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063107643
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
124 schema:name L. D. Landau Institute for Theoretical Physics, Academy of Sciences of the USSR, Kosygina 2, 117940, Moscow, USSR
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...