A comparison between transitions induced by random and periodic fluctuations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-02

AUTHORS

C. R. Doering, W. Horsthemke

ABSTRACT

It is shown that a certain class of nonlinear systems possesses a unique and stable stationary state when subjected to periodic dichotomous modulations of an external parameter. This result enables us to define a probability density for the system and to characterize its shape and support. We compare this probability density with the one obtained in the case that the external parameter fluctuates randomly like a Markovian dichotomous noise and discuss various fluctuation-induced transition phenomena. The effects of these two types of fluctuations are quite dissimilar: the random fluctuations give rise to a richer behavior. The results are applied to the Freedericksz transition in nematic liquid crystals. More... »

PAGES

763-783

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01010489

DOI

http://dx.doi.org/10.1007/bf01010489

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010907625


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Center for Studies in Statistical Mechanics, Physics Department, University of Texas, 78712, Austin, Texas"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doering", 
        "givenName": "C. R.", 
        "id": "sg:person.01161117310.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Center for Studies in Statistical Mechanics, Physics Department, University of Texas, 78712, Austin, Texas", 
            "Institute for Fusion Studies, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horsthemke", 
        "givenName": "W.", 
        "id": "sg:person.016551422072.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016551422072.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02154750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014610875", 
          "https://doi.org/10.1007/bf02154750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02154750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014610875", 
          "https://doi.org/10.1007/bf02154750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024206714", 
          "https://doi.org/10.1007/bf00275692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024206714", 
          "https://doi.org/10.1007/bf00275692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.22.2171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.22.2171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.26.1589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.26.1589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.26.2946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.26.2946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.1062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.1062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.9970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062265349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.64.1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063137987"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1985-02", 
    "datePublishedReg": "1985-02-01", 
    "description": "It is shown that a certain class of nonlinear systems possesses a unique and stable stationary state when subjected to periodic dichotomous modulations of an external parameter. This result enables us to define a probability density for the system and to characterize its shape and support. We compare this probability density with the one obtained in the case that the external parameter fluctuates randomly like a Markovian dichotomous noise and discuss various fluctuation-induced transition phenomena. The effects of these two types of fluctuations are quite dissimilar: the random fluctuations give rise to a richer behavior. The results are applied to the Freedericksz transition in nematic liquid crystals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01010489", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "A comparison between transitions induced by random and periodic fluctuations", 
    "pagination": "763-783", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "33f77ab45441cd07a665d588d4ef99b79dee11f3366b6685e109afd82d323aaa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01010489"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010907625"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01010489", 
      "https://app.dimensions.ai/details/publication/pub.1010907625"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01010489"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01010489'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01010489'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01010489'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01010489'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01010489 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Na8d7b8612bdf41ddb392701afb8fc261
4 schema:citation sg:pub.10.1007/bf00275692
5 sg:pub.10.1007/bf02154750
6 https://doi.org/10.1103/physreva.22.2171
7 https://doi.org/10.1103/physreva.26.1589
8 https://doi.org/10.1103/physreva.26.2946
9 https://doi.org/10.1103/physrevlett.51.1062
10 https://doi.org/10.1119/1.9970
11 https://doi.org/10.1143/ptp.64.1233
12 schema:datePublished 1985-02
13 schema:datePublishedReg 1985-02-01
14 schema:description It is shown that a certain class of nonlinear systems possesses a unique and stable stationary state when subjected to periodic dichotomous modulations of an external parameter. This result enables us to define a probability density for the system and to characterize its shape and support. We compare this probability density with the one obtained in the case that the external parameter fluctuates randomly like a Markovian dichotomous noise and discuss various fluctuation-induced transition phenomena. The effects of these two types of fluctuations are quite dissimilar: the random fluctuations give rise to a richer behavior. The results are applied to the Freedericksz transition in nematic liquid crystals.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N9efbc7b30da4449191666c995fd93840
19 Nd5b25b82efd04ffe862f677652b2a0c0
20 sg:journal.1040979
21 schema:name A comparison between transitions induced by random and periodic fluctuations
22 schema:pagination 763-783
23 schema:productId N07e056a92c8b41548457fad7b92970ca
24 Nab041a15c39448f4a4dd0f67a46d4036
25 Nab610e0a73754552b75574ee60b2a65b
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010907625
27 https://doi.org/10.1007/bf01010489
28 schema:sdDatePublished 2019-04-11T00:12
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nb737816a422e41eea312d202a18b5f40
31 schema:url http://link.springer.com/10.1007/BF01010489
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N07e056a92c8b41548457fad7b92970ca schema:name doi
36 schema:value 10.1007/bf01010489
37 rdf:type schema:PropertyValue
38 N82d19b062f794b4a806d9dd46adc6b57 rdf:first sg:person.016551422072.57
39 rdf:rest rdf:nil
40 N9efbc7b30da4449191666c995fd93840 schema:issueNumber 3-4
41 rdf:type schema:PublicationIssue
42 Na8d7b8612bdf41ddb392701afb8fc261 rdf:first sg:person.01161117310.79
43 rdf:rest N82d19b062f794b4a806d9dd46adc6b57
44 Nab041a15c39448f4a4dd0f67a46d4036 schema:name dimensions_id
45 schema:value pub.1010907625
46 rdf:type schema:PropertyValue
47 Nab610e0a73754552b75574ee60b2a65b schema:name readcube_id
48 schema:value 33f77ab45441cd07a665d588d4ef99b79dee11f3366b6685e109afd82d323aaa
49 rdf:type schema:PropertyValue
50 Nb737816a422e41eea312d202a18b5f40 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nd5b25b82efd04ffe862f677652b2a0c0 schema:volumeNumber 38
53 rdf:type schema:PublicationVolume
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
58 schema:name Statistics
59 rdf:type schema:DefinedTerm
60 sg:journal.1040979 schema:issn 0022-4715
61 1572-9613
62 schema:name Journal of Statistical Physics
63 rdf:type schema:Periodical
64 sg:person.01161117310.79 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
65 schema:familyName Doering
66 schema:givenName C. R.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79
68 rdf:type schema:Person
69 sg:person.016551422072.57 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
70 schema:familyName Horsthemke
71 schema:givenName W.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016551422072.57
73 rdf:type schema:Person
74 sg:pub.10.1007/bf00275692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024206714
75 https://doi.org/10.1007/bf00275692
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02154750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014610875
78 https://doi.org/10.1007/bf02154750
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physreva.22.2171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060468838
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physreva.26.1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060470387
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physreva.26.2946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060470557
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physrevlett.51.1062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788954
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1119/1.9970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062265349
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1143/ptp.64.1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063137987
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
93 schema:name Center for Studies in Statistical Mechanics, Physics Department, University of Texas, 78712, Austin, Texas
94 Institute for Fusion Studies, USA
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...