Ontology type: schema:ScholarlyArticle Open Access: True
1992-10
AUTHORSGregory F. Cooper, Edward Herskovits
ABSTRACTThis paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction of probabilistic expert systems. We extend the basic method to handle missing data and hidden (latent) variables. We show how to perform probabilistic inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary evaluation of an algorithm for constructing a belief network from a database of cases. Finally, we relate the methods in this paper to previous work, and we discuss open problems. More... »
PAGES309-347
http://scigraph.springernature.com/pub.10.1007/bf00994110
DOIhttp://dx.doi.org/10.1007/bf00994110
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1046316965
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Pittsburgh",
"id": "https://www.grid.ac/institutes/grid.21925.3d",
"name": [
"Section of Medical Informatics, Department of Medicine, University of Pittsburgh, B50A Lothrop Hall, 15261, Pittsburgh, PA"
],
"type": "Organization"
},
"familyName": "Cooper",
"givenName": "Gregory F.",
"id": "sg:person.0775714075.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775714075.28"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Noetic Systems, Incorporated, 2504 Maryland Avenue, 21218, Baltimore, MD"
],
"type": "Organization"
},
"familyName": "Herskovits",
"givenName": "Edward",
"id": "sg:person.01322646120.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322646120.55"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/b978-0-444-88650-7.50031-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004355260"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-2283-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011226578",
"https://doi.org/10.1007/978-1-4613-2283-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-2283-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011226578",
"https://doi.org/10.1007/978-1-4613-2283-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1539-6924.1988.tb01156.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012078361"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/b978-0-444-88650-7.50013-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013261863"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0004-3702(86)90072-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014162908"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0004-3702(86)90072-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014162908"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/asm.3150050106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018719050"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00116251",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019422208",
"https://doi.org/10.1007/bf00116251"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s1446788700027312",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021882248"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/b978-0-444-88738-2.50017-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022219284"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0270-0255(87)90579-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023546852"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0304-4076(88)90044-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030861439"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/b978-0-444-88650-7.50030-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037480404"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0069178",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039869074",
"https://doi.org/10.1007/bfb0069178"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0004-3702(89)90049-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040179661"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0004-3702(89)90049-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040179661"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0888-613x(88)90120-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042268860"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0888-613x(88)90120-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042268860"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/net.3230200508",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042465256"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/net.3230200507",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045466199"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/b978-0-444-70058-2.50032-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045870333"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0010-4809(82)90035-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052564335"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0010-4809(82)90035-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052564335"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0049124190019001001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053848542"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0049124190019001001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053848542"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tit.1968.1054142",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061646459"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/089443939100900106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063873485"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/089443939100900106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063873485"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1287/mnsc.35.5.527",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064720573"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1287/opre.36.4.589",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064729937"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/2336490",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069896152"
],
"type": "CreativeWork"
}
],
"datePublished": "1992-10",
"datePublishedReg": "1992-10-01",
"description": "This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction of probabilistic expert systems. We extend the basic method to handle missing data and hidden (latent) variables. We show how to perform probabilistic inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary evaluation of an algorithm for constructing a belief network from a database of cases. Finally, we relate the methods in this paper to previous work, and we discuss open problems.",
"genre": "research_article",
"id": "sg:pub.10.1007/bf00994110",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1125588",
"issn": [
"0885-6125",
"1573-0565"
],
"name": "Machine Learning",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"name": "A Bayesian method for the induction of probabilistic networks from data",
"pagination": "309-347",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"dca202bd9fb6fd9837ee70b419e2cac9491693dca0543c85a08a468468625068"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00994110"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1046316965"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00994110",
"https://app.dimensions.ai/details/publication/pub.1046316965"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T00:12",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000496.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/BF00994110"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00994110'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00994110'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00994110'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00994110'
This table displays all metadata directly associated to this object as RDF triples.
148 TRIPLES
21 PREDICATES
52 URIs
19 LITERALS
7 BLANK NODES