Applying robust regression techniques to institutional data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-09

AUTHORS

Franz Bingen, Carlos Siau, Peter Rousseeuw

ABSTRACT

Regression techniques are used frequently to analyze the relationships between university activity variables and the needs for different categories of resources. The ordinary least squares method (LS) has the disadvantage of being very sensitive to outliers. As an alternative the least median of squares (LMS) technique is discussed, which can resist a large fraction of contaminated data. To demonstrate the advantages of LMS, the parameters of some regression equations, estimated some years ago by means of ordinary least squares, and describing the needs for nonacademic staff and operating funds in a university, will be reestimated by means of this robust regression technique. More... »

PAGES

277-297

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00991792

DOI

http://dx.doi.org/10.1007/bf00991792

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028969000


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vrije Universiteit Brussel", 
          "id": "https://www.grid.ac/institutes/grid.8767.e", 
          "name": [
            "Department of Mathematics, Vrije Universtiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bingen", 
        "givenName": "Franz", 
        "id": "sg:person.015756745456.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015756745456.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vrije Universiteit Brussel", 
          "id": "https://www.grid.ac/institutes/grid.8767.e", 
          "name": [
            "Vrije Universtiteit Brussel, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siau", 
        "givenName": "Carlos", 
        "id": "sg:person.011444215656.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011444215656.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Delft University of Technology, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseeuw", 
        "givenName": "Peter", 
        "id": "sg:person.0775337371.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00976547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008636143", 
          "https://doi.org/10.1007/bf00976547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0098492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034874854", 
          "https://doi.org/10.1007/bfb0098492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1982.10477855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1984.10477105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/69.1.242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177693054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064398394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176342503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640342"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-09", 
    "datePublishedReg": "1986-09-01", 
    "description": "Regression techniques are used frequently to analyze the relationships between university activity variables and the needs for different categories of resources. The ordinary least squares method (LS) has the disadvantage of being very sensitive to outliers. As an alternative the least median of squares (LMS) technique is discussed, which can resist a large fraction of contaminated data. To demonstrate the advantages of LMS, the parameters of some regression equations, estimated some years ago by means of ordinary least squares, and describing the needs for nonacademic staff and operating funds in a university, will be reestimated by means of this robust regression technique.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00991792", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046373", 
        "issn": [
          "0361-0365", 
          "1573-188X"
        ], 
        "name": "Research in Higher Education", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Applying robust regression techniques to institutional data", 
    "pagination": "277-297", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8a007828a984df46394193609ee5a25f63b78c35982c8a062eb29c3fc61422bc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00991792"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028969000"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00991792", 
      "https://app.dimensions.ai/details/publication/pub.1028969000"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46775_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00991792"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00991792'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00991792'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00991792'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00991792'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00991792 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nb9ef444651874caaa032c7c55ebce06f
4 schema:citation sg:pub.10.1007/bf00976547
5 sg:pub.10.1007/bfb0098492
6 https://doi.org/10.1080/01621459.1982.10477855
7 https://doi.org/10.1080/01621459.1984.10477105
8 https://doi.org/10.1093/biomet/69.1.242
9 https://doi.org/10.1214/aoms/1177693054
10 https://doi.org/10.1214/aos/1176342503
11 https://doi.org/10.2307/1912810
12 schema:datePublished 1986-09
13 schema:datePublishedReg 1986-09-01
14 schema:description Regression techniques are used frequently to analyze the relationships between university activity variables and the needs for different categories of resources. The ordinary least squares method (LS) has the disadvantage of being very sensitive to outliers. As an alternative the least median of squares (LMS) technique is discussed, which can resist a large fraction of contaminated data. To demonstrate the advantages of LMS, the parameters of some regression equations, estimated some years ago by means of ordinary least squares, and describing the needs for nonacademic staff and operating funds in a university, will be reestimated by means of this robust regression technique.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N2201e462ab174ebdae2bf1fad53e9e95
19 Nd2322c8cec62453b8c9e3ec397e7b54f
20 sg:journal.1046373
21 schema:name Applying robust regression techniques to institutional data
22 schema:pagination 277-297
23 schema:productId N2721c995a32a4aea858e610a9aa44e84
24 Nfb9c1800ec954567b119f727697d76db
25 Nfe2a04d01c104882b6ae8e34402c06e6
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028969000
27 https://doi.org/10.1007/bf00991792
28 schema:sdDatePublished 2019-04-11T13:35
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nad6ea66de13242c2a30b643b394c3221
31 schema:url http://link.springer.com/10.1007/BF00991792
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N2201e462ab174ebdae2bf1fad53e9e95 schema:volumeNumber 25
36 rdf:type schema:PublicationVolume
37 N2721c995a32a4aea858e610a9aa44e84 schema:name doi
38 schema:value 10.1007/bf00991792
39 rdf:type schema:PropertyValue
40 N9f70b3fcfc9b400f87f2961c55204acd rdf:first sg:person.011444215656.75
41 rdf:rest Nf434f33161644bfe8b23fa12a43f23e2
42 Nad6ea66de13242c2a30b643b394c3221 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 Nb9ef444651874caaa032c7c55ebce06f rdf:first sg:person.015756745456.67
45 rdf:rest N9f70b3fcfc9b400f87f2961c55204acd
46 Nd2322c8cec62453b8c9e3ec397e7b54f schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 Nf434f33161644bfe8b23fa12a43f23e2 rdf:first sg:person.0775337371.63
49 rdf:rest rdf:nil
50 Nfb9c1800ec954567b119f727697d76db schema:name readcube_id
51 schema:value 8a007828a984df46394193609ee5a25f63b78c35982c8a062eb29c3fc61422bc
52 rdf:type schema:PropertyValue
53 Nfe2a04d01c104882b6ae8e34402c06e6 schema:name dimensions_id
54 schema:value pub.1028969000
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
60 schema:name Applied Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1046373 schema:issn 0361-0365
63 1573-188X
64 schema:name Research in Higher Education
65 rdf:type schema:Periodical
66 sg:person.011444215656.75 schema:affiliation https://www.grid.ac/institutes/grid.8767.e
67 schema:familyName Siau
68 schema:givenName Carlos
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011444215656.75
70 rdf:type schema:Person
71 sg:person.015756745456.67 schema:affiliation https://www.grid.ac/institutes/grid.8767.e
72 schema:familyName Bingen
73 schema:givenName Franz
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015756745456.67
75 rdf:type schema:Person
76 sg:person.0775337371.63 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
77 schema:familyName Rousseeuw
78 schema:givenName Peter
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63
80 rdf:type schema:Person
81 sg:pub.10.1007/bf00976547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008636143
82 https://doi.org/10.1007/bf00976547
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bfb0098492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034874854
85 https://doi.org/10.1007/bfb0098492
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1080/01621459.1982.10477855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302678
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1080/01621459.1984.10477105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302950
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1093/biomet/69.1.242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419157
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1214/aoms/1177693054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064398394
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1214/aos/1176342503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406843
96 rdf:type schema:CreativeWork
97 https://doi.org/10.2307/1912810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640342
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
100 schema:name Delft University of Technology, The Netherlands
101 rdf:type schema:Organization
102 https://www.grid.ac/institutes/grid.8767.e schema:alternateName Vrije Universiteit Brussel
103 schema:name Department of Mathematics, Vrije Universtiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
104 Vrije Universtiteit Brussel, Belgium
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...