T∞-Fuzzy observables View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-10

AUTHORS

A. Kolesárová, B. Riečan

ABSTRACT

Observables are defined as homomorphisms from the Borelσ-algebra into a family of fuzzy sets considered with respect to the Giles connectives. Algebraic operations with observables are introduced and their relation to the corresponding operations with fuzzy random variables is explained.

PAGES

1897-1909

References to SciGraph publications

  • 1976. Ma\e auf unscharfen Mengen in PROBABILITY THEORY AND RELATED FIELDS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00979511

    DOI

    http://dx.doi.org/10.1007/bf00979511

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006679106


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Slovak Technical University, 812 19, Bratislava, Slovakia", 
              "id": "http://www.grid.ac/institutes/grid.440789.6", 
              "name": [
                "Department of Mathematics, Slovak Technical University, 812 19, Bratislava, Slovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koles\u00e1rov\u00e1", 
            "givenName": "A.", 
            "id": "sg:person.013323425473.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematical Institute, Slovak Academy of Sciences, 814 73, Bratislava, Slovakia", 
              "id": "http://www.grid.ac/institutes/grid.511126.0", 
              "name": [
                "Mathematical Institute, Slovak Academy of Sciences, 814 73, Bratislava, Slovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rie\u010dan", 
            "givenName": "B.", 
            "id": "sg:person.014312461642.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312461642.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00532543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038985635", 
              "https://doi.org/10.1007/bf00532543"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-10", 
        "datePublishedReg": "1993-10-01", 
        "description": "Observables are defined as homomorphisms from the Borel\u03c3-algebra into a family of fuzzy sets considered with respect to the Giles connectives. Algebraic operations with observables are introduced and their relation to the corresponding operations with fuzzy random variables is explained.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00979511", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053677", 
            "issn": [
              "0020-7748", 
              "1572-9575"
            ], 
            "name": "International Journal of Theoretical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "fuzzy random variables", 
          "random variables", 
          "algebraic operations", 
          "fuzzy observables", 
          "observables", 
          "fuzzy sets", 
          "corresponding operations", 
          "homomorphism", 
          "set", 
          "operation", 
          "variables", 
          "respect", 
          "relation", 
          "connectives", 
          "family"
        ], 
        "name": "T\u221e-Fuzzy observables", 
        "pagination": "1897-1909", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006679106"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00979511"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00979511", 
          "https://app.dimensions.ai/details/publication/pub.1006679106"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_246.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00979511"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00979511'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00979511'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00979511'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00979511'


     

    This table displays all metadata directly associated to this object as RDF triples.

    87 TRIPLES      22 PREDICATES      42 URIs      33 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00979511 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Neaef4f68e5cd458dbab1dfc8bc06bd26
    4 schema:citation sg:pub.10.1007/bf00532543
    5 schema:datePublished 1993-10
    6 schema:datePublishedReg 1993-10-01
    7 schema:description Observables are defined as homomorphisms from the Borelσ-algebra into a family of fuzzy sets considered with respect to the Giles connectives. Algebraic operations with observables are introduced and their relation to the corresponding operations with fuzzy random variables is explained.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N4ad86a415df446d08d451932c6f23454
    12 N7cd1567c195f487ead1410b12a9b07a8
    13 sg:journal.1053677
    14 schema:keywords algebraic operations
    15 connectives
    16 corresponding operations
    17 family
    18 fuzzy observables
    19 fuzzy random variables
    20 fuzzy sets
    21 homomorphism
    22 observables
    23 operation
    24 random variables
    25 relation
    26 respect
    27 set
    28 variables
    29 schema:name T∞-Fuzzy observables
    30 schema:pagination 1897-1909
    31 schema:productId N3a2b4a198bf44947909054f3071f6599
    32 Nad31adf9b1814c7ba98ec3c23d7df96e
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006679106
    34 https://doi.org/10.1007/bf00979511
    35 schema:sdDatePublished 2022-05-20T07:19
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N95f0642e83ad4abbb2a21d0be3754fd4
    38 schema:url https://doi.org/10.1007/bf00979511
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset articles
    41 rdf:type schema:ScholarlyArticle
    42 N3a2b4a198bf44947909054f3071f6599 schema:name dimensions_id
    43 schema:value pub.1006679106
    44 rdf:type schema:PropertyValue
    45 N3c82676597d14a1e9b325ab04cd0c96c rdf:first sg:person.014312461642.04
    46 rdf:rest rdf:nil
    47 N4ad86a415df446d08d451932c6f23454 schema:volumeNumber 32
    48 rdf:type schema:PublicationVolume
    49 N7cd1567c195f487ead1410b12a9b07a8 schema:issueNumber 10
    50 rdf:type schema:PublicationIssue
    51 N95f0642e83ad4abbb2a21d0be3754fd4 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 Nad31adf9b1814c7ba98ec3c23d7df96e schema:name doi
    54 schema:value 10.1007/bf00979511
    55 rdf:type schema:PropertyValue
    56 Neaef4f68e5cd458dbab1dfc8bc06bd26 rdf:first sg:person.013323425473.28
    57 rdf:rest N3c82676597d14a1e9b325ab04cd0c96c
    58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Mathematical Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Pure Mathematics
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1053677 schema:issn 0020-7748
    65 1572-9575
    66 schema:name International Journal of Theoretical Physics
    67 schema:publisher Springer Nature
    68 rdf:type schema:Periodical
    69 sg:person.013323425473.28 schema:affiliation grid-institutes:grid.440789.6
    70 schema:familyName Kolesárová
    71 schema:givenName A.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28
    73 rdf:type schema:Person
    74 sg:person.014312461642.04 schema:affiliation grid-institutes:grid.511126.0
    75 schema:familyName Riečan
    76 schema:givenName B.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312461642.04
    78 rdf:type schema:Person
    79 sg:pub.10.1007/bf00532543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038985635
    80 https://doi.org/10.1007/bf00532543
    81 rdf:type schema:CreativeWork
    82 grid-institutes:grid.440789.6 schema:alternateName Department of Mathematics, Slovak Technical University, 812 19, Bratislava, Slovakia
    83 schema:name Department of Mathematics, Slovak Technical University, 812 19, Bratislava, Slovakia
    84 rdf:type schema:Organization
    85 grid-institutes:grid.511126.0 schema:alternateName Mathematical Institute, Slovak Academy of Sciences, 814 73, Bratislava, Slovakia
    86 schema:name Mathematical Institute, Slovak Academy of Sciences, 814 73, Bratislava, Slovakia
    87 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...