T∞-Fuzzy observables View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-10

AUTHORS

A. Kolesárová, B. Riečan

ABSTRACT

Observables are defined as homomorphisms from the Borelσ-algebra into a family of fuzzy sets considered with respect to the Giles connectives. Algebraic operations with observables are introduced and their relation to the corresponding operations with fuzzy random variables is explained.

PAGES

1897-1909

References to SciGraph publications

  • 1976-09. Ma\e auf unscharfen Mengen in PROBABILITY THEORY AND RELATED FIELDS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00979511

    DOI

    http://dx.doi.org/10.1007/bf00979511

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006679106


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Slovak Technical University, 812 19, Bratislava, Slovakia", 
              "id": "http://www.grid.ac/institutes/grid.440789.6", 
              "name": [
                "Department of Mathematics, Slovak Technical University, 812 19, Bratislava, Slovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koles\u00e1rov\u00e1", 
            "givenName": "A.", 
            "id": "sg:person.013323425473.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematical Institute, Slovak Academy of Sciences, 814 73, Bratislava, Slovakia", 
              "id": "http://www.grid.ac/institutes/grid.419303.c", 
              "name": [
                "Mathematical Institute, Slovak Academy of Sciences, 814 73, Bratislava, Slovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rie\u010dan", 
            "givenName": "B.", 
            "id": "sg:person.014312461642.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312461642.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00532543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038985635", 
              "https://doi.org/10.1007/bf00532543"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-10", 
        "datePublishedReg": "1993-10-01", 
        "description": "Observables are defined as homomorphisms from the Borel\u03c3-algebra into a family of fuzzy sets considered with respect to the Giles connectives. Algebraic operations with observables are introduced and their relation to the corresponding operations with fuzzy random variables is explained.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00979511", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053677", 
            "issn": [
              "0020-7748", 
              "1572-9575"
            ], 
            "name": "International Journal of Theoretical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "fuzzy random variables", 
          "random variables", 
          "algebraic operations", 
          "fuzzy sets", 
          "corresponding operations", 
          "observables", 
          "homomorphism", 
          "variables", 
          "set", 
          "operation", 
          "respect", 
          "connectives", 
          "family", 
          "relation", 
          "Borel\u03c3-algebra", 
          "Giles connectives"
        ], 
        "name": "T\u221e-Fuzzy observables", 
        "pagination": "1897-1909", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006679106"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00979511"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00979511", 
          "https://app.dimensions.ai/details/publication/pub.1006679106"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_229.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00979511"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00979511'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00979511'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00979511'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00979511'


     

    This table displays all metadata directly associated to this object as RDF triples.

    88 TRIPLES      22 PREDICATES      43 URIs      34 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00979511 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ne75a7ac578e64f319b6bb1f2040bbead
    4 schema:citation sg:pub.10.1007/bf00532543
    5 schema:datePublished 1993-10
    6 schema:datePublishedReg 1993-10-01
    7 schema:description Observables are defined as homomorphisms from the Borelσ-algebra into a family of fuzzy sets considered with respect to the Giles connectives. Algebraic operations with observables are introduced and their relation to the corresponding operations with fuzzy random variables is explained.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N10748ba6a13c468684d6808f2d00bd02
    12 N274c80230e0740978de5fc2ea2cae45b
    13 sg:journal.1053677
    14 schema:keywords Borelσ-algebra
    15 Giles connectives
    16 algebraic operations
    17 connectives
    18 corresponding operations
    19 family
    20 fuzzy random variables
    21 fuzzy sets
    22 homomorphism
    23 observables
    24 operation
    25 random variables
    26 relation
    27 respect
    28 set
    29 variables
    30 schema:name T∞-Fuzzy observables
    31 schema:pagination 1897-1909
    32 schema:productId N5b6d0780c339445ba92735bc6dcefa92
    33 N6ca8e571821b4a74a4b45196b5236151
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006679106
    35 https://doi.org/10.1007/bf00979511
    36 schema:sdDatePublished 2022-01-01T18:05
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N4bd9a024ce094134946139058d8db9fa
    39 schema:url https://doi.org/10.1007/bf00979511
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N10748ba6a13c468684d6808f2d00bd02 schema:issueNumber 10
    44 rdf:type schema:PublicationIssue
    45 N274c80230e0740978de5fc2ea2cae45b schema:volumeNumber 32
    46 rdf:type schema:PublicationVolume
    47 N4bd9a024ce094134946139058d8db9fa schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N5b6d0780c339445ba92735bc6dcefa92 schema:name dimensions_id
    50 schema:value pub.1006679106
    51 rdf:type schema:PropertyValue
    52 N6ca8e571821b4a74a4b45196b5236151 schema:name doi
    53 schema:value 10.1007/bf00979511
    54 rdf:type schema:PropertyValue
    55 N9d58d38e950d46f48e180aad8cc1505a rdf:first sg:person.014312461642.04
    56 rdf:rest rdf:nil
    57 Ne75a7ac578e64f319b6bb1f2040bbead rdf:first sg:person.013323425473.28
    58 rdf:rest N9d58d38e950d46f48e180aad8cc1505a
    59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Mathematical Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Pure Mathematics
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1053677 schema:issn 0020-7748
    66 1572-9575
    67 schema:name International Journal of Theoretical Physics
    68 schema:publisher Springer Nature
    69 rdf:type schema:Periodical
    70 sg:person.013323425473.28 schema:affiliation grid-institutes:grid.440789.6
    71 schema:familyName Kolesárová
    72 schema:givenName A.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28
    74 rdf:type schema:Person
    75 sg:person.014312461642.04 schema:affiliation grid-institutes:grid.419303.c
    76 schema:familyName Riečan
    77 schema:givenName B.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312461642.04
    79 rdf:type schema:Person
    80 sg:pub.10.1007/bf00532543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038985635
    81 https://doi.org/10.1007/bf00532543
    82 rdf:type schema:CreativeWork
    83 grid-institutes:grid.419303.c schema:alternateName Mathematical Institute, Slovak Academy of Sciences, 814 73, Bratislava, Slovakia
    84 schema:name Mathematical Institute, Slovak Academy of Sciences, 814 73, Bratislava, Slovakia
    85 rdf:type schema:Organization
    86 grid-institutes:grid.440789.6 schema:alternateName Department of Mathematics, Slovak Technical University, 812 19, Bratislava, Slovakia
    87 schema:name Department of Mathematics, Slovak Technical University, 812 19, Bratislava, Slovakia
    88 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...