The estimation of Wright's fixation index from genotypic frequencies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1970-12

AUTHORS

A. H. D. Brown

ABSTRACT

For populations in which the genotypic frequencies are estimated, it is customary to test the deviation of the estimates from those predicted by the Hardy-Weinberg Law using the x2 goodness-of-fit statistic. Maximum likelihood estimation ofWright's F statistic and its variance furnishes a similar test. Following the derivation of the variance of, this note reviews the relation between the two tests. The F statistic possesses the advantages of full sufficiency and an easier formulation of the power function. Its bias is negligible when sample size exceeds 20. More... »

PAGES

399-406

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00958921

DOI

http://dx.doi.org/10.1007/bf00958921

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031674423

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/5488990


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Selection, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of York", 
          "id": "https://www.grid.ac/institutes/grid.5685.e", 
          "name": [
            "Department of Biology, University of York, Heslington, VO1 5DD, York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "A. H. D.", 
        "id": "sg:person.011054342742.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011054342742.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1949.tb02451.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025534180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/214674a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032763335", 
          "https://doi.org/10.1038/214674a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075426794", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078861211", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1959.tb03043.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085732985"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1970-12", 
    "datePublishedReg": "1970-12-01", 
    "description": "For populations in which the genotypic frequencies are estimated, it is customary to test the deviation of the estimates from those predicted by the Hardy-Weinberg Law using the x2 goodness-of-fit statistic. Maximum likelihood estimation ofWright's F statistic and its variance furnishes a similar test. Following the derivation of the variance of, this note reviews the relation between the two tests. The F statistic possesses the advantages of full sufficiency and an easier formulation of the power function. Its bias is negligible when sample size exceeds 20.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00958921", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017127", 
        "issn": [
          "0016-6707", 
          "1573-6857"
        ], 
        "name": "Genetica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "The estimation of Wright's fixation index from genotypic frequencies", 
    "pagination": "399-406", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "96e422dd19fa969b262f7e2ea1c9fc8cf2fd370774c1df8f4137ddabf624af15"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "5488990"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0370740"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00958921"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031674423"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00958921", 
      "https://app.dimensions.ai/details/publication/pub.1031674423"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46737_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF00958921"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00958921'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00958921'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00958921'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00958921'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      38 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00958921 schema:about N496e2c8524224564a5c9811d9bbee658
2 N4e2965f962594327a17aac866ca9777f
3 N770abbe1940d46aca0ef54c6f8b33e73
4 Nb66a9903d6a043c9861e4cdd9cfefc96
5 anzsrc-for:06
6 anzsrc-for:0604
7 schema:author N5397c99741d2493691aec7c7037c3c0d
8 schema:citation sg:pub.10.1038/214674a0
9 https://app.dimensions.ai/details/publication/pub.1075426794
10 https://app.dimensions.ai/details/publication/pub.1078861211
11 https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
12 https://doi.org/10.1111/j.1558-5646.1959.tb03043.x
13 schema:datePublished 1970-12
14 schema:datePublishedReg 1970-12-01
15 schema:description For populations in which the genotypic frequencies are estimated, it is customary to test the deviation of the estimates from those predicted by the Hardy-Weinberg Law using the x2 goodness-of-fit statistic. Maximum likelihood estimation ofWright's F statistic and its variance furnishes a similar test. Following the derivation of the variance of, this note reviews the relation between the two tests. The F statistic possesses the advantages of full sufficiency and an easier formulation of the power function. Its bias is negligible when sample size exceeds 20.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N7842843e014c4e76b379cc130a305618
20 N9e6b33a0c5f4453bb8eef4fad902763d
21 sg:journal.1017127
22 schema:name The estimation of Wright's fixation index from genotypic frequencies
23 schema:pagination 399-406
24 schema:productId N1634d4d9febc4df0a4cb56fdc47e4b4f
25 N1ef10b4ab93b48e4a1e45020707d40bf
26 N27ce548381e94cc894ea6b433b2e25ac
27 N6c88cd7803e142d4aec3bb1a10e83ab4
28 N829b8c384e1643848b74d8534d06c2cf
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031674423
30 https://doi.org/10.1007/bf00958921
31 schema:sdDatePublished 2019-04-11T13:26
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Na19adbd45de44879b052165d46aa18fa
34 schema:url http://link.springer.com/10.1007%2FBF00958921
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N1634d4d9febc4df0a4cb56fdc47e4b4f schema:name dimensions_id
39 schema:value pub.1031674423
40 rdf:type schema:PropertyValue
41 N1ef10b4ab93b48e4a1e45020707d40bf schema:name doi
42 schema:value 10.1007/bf00958921
43 rdf:type schema:PropertyValue
44 N27ce548381e94cc894ea6b433b2e25ac schema:name pubmed_id
45 schema:value 5488990
46 rdf:type schema:PropertyValue
47 N496e2c8524224564a5c9811d9bbee658 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
48 schema:name Gene Frequency
49 rdf:type schema:DefinedTerm
50 N4e2965f962594327a17aac866ca9777f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Selection, Genetic
52 rdf:type schema:DefinedTerm
53 N5397c99741d2493691aec7c7037c3c0d rdf:first sg:person.011054342742.42
54 rdf:rest rdf:nil
55 N6c88cd7803e142d4aec3bb1a10e83ab4 schema:name nlm_unique_id
56 schema:value 0370740
57 rdf:type schema:PropertyValue
58 N770abbe1940d46aca0ef54c6f8b33e73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Genotype
60 rdf:type schema:DefinedTerm
61 N7842843e014c4e76b379cc130a305618 schema:volumeNumber 41
62 rdf:type schema:PublicationVolume
63 N829b8c384e1643848b74d8534d06c2cf schema:name readcube_id
64 schema:value 96e422dd19fa969b262f7e2ea1c9fc8cf2fd370774c1df8f4137ddabf624af15
65 rdf:type schema:PropertyValue
66 N9e6b33a0c5f4453bb8eef4fad902763d schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 Na19adbd45de44879b052165d46aa18fa schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nb66a9903d6a043c9861e4cdd9cfefc96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Mathematics
72 rdf:type schema:DefinedTerm
73 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
74 schema:name Biological Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
77 schema:name Genetics
78 rdf:type schema:DefinedTerm
79 sg:journal.1017127 schema:issn 0016-6707
80 1573-6857
81 schema:name Genetica
82 rdf:type schema:Periodical
83 sg:person.011054342742.42 schema:affiliation https://www.grid.ac/institutes/grid.5685.e
84 schema:familyName Brown
85 schema:givenName A. H. D.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011054342742.42
87 rdf:type schema:Person
88 sg:pub.10.1038/214674a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032763335
89 https://doi.org/10.1038/214674a0
90 rdf:type schema:CreativeWork
91 https://app.dimensions.ai/details/publication/pub.1075426794 schema:CreativeWork
92 https://app.dimensions.ai/details/publication/pub.1078861211 schema:CreativeWork
93 https://doi.org/10.1111/j.1469-1809.1949.tb02451.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025534180
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1111/j.1558-5646.1959.tb03043.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085732985
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.5685.e schema:alternateName University of York
98 schema:name Department of Biology, University of York, Heslington, VO1 5DD, York
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...