Conformal mapping of multiply connected domains exterior to thin regions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-07

AUTHORS

Dorel Homentcovschi

ABSTRACT

This paper gives the formal asymptotic expansion of the functionZ=F(z, ε) which maps conformally the multiple connected domain exterior to some symmetrical thin regions inz plane into the complex planeZ with aligned cuts on the real axis. The functionF(z, ε) is represented as a superposition of singularities on segments inside the thin regions. The resulting integral equation is integrated asymptotically by using the method developed in [1]. In the last section of the paper the given theory is applied to the conformal mapping of the domain exterior to two aligned thin ellipses. More... »

PAGES

503-512

References to SciGraph publications

  • 1980-05. On the mixed boundary-value problem for harmonic functions in plane domains in ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND PHYSIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00955699

    DOI

    http://dx.doi.org/10.1007/bf00955699

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013837258


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Central Institute of Mathematics, Bukarest, Roumania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Homentcovschi", 
            "givenName": "Dorel", 
            "id": "sg:person.0725407310.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725407310.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01590662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027853255", 
              "https://doi.org/10.1007/bf01590662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112067001946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053929922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112067001946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053929922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0510112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062847213"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1982-07", 
        "datePublishedReg": "1982-07-01", 
        "description": "This paper gives the formal asymptotic expansion of the functionZ=F(z, \u03b5) which maps conformally the multiple connected domain exterior to some symmetrical thin regions inz plane into the complex planeZ with aligned cuts on the real axis. The functionF(z, \u03b5) is represented as a superposition of singularities on segments inside the thin regions. The resulting integral equation is integrated asymptotically by using the method developed in [1]. In the last section of the paper the given theory is applied to the conformal mapping of the domain exterior to two aligned thin ellipses.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00955699", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053636", 
            "issn": [
              "0044-2275", 
              "1420-9039"
            ], 
            "name": "Zeitschrift f\u00fcr angewandte Mathematik und Physik", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "name": "Conformal mapping of multiply connected domains exterior to thin regions", 
        "pagination": "503-512", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "41eafdf0a865a8dce9d86b197454ca4ef89788e008e7e245b1ceb1842a88fc2f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00955699"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013837258"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00955699", 
          "https://app.dimensions.ai/details/publication/pub.1013837258"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000607.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FBF00955699"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00955699'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00955699'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00955699'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00955699'


     

    This table displays all metadata directly associated to this object as RDF triples.

    70 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00955699 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nb878854fb4684fd1abe2ee4cd75bc0ad
    4 schema:citation sg:pub.10.1007/bf01590662
    5 https://doi.org/10.1017/s0022112067001946
    6 https://doi.org/10.1137/0510112
    7 schema:datePublished 1982-07
    8 schema:datePublishedReg 1982-07-01
    9 schema:description This paper gives the formal asymptotic expansion of the functionZ=F(z, ε) which maps conformally the multiple connected domain exterior to some symmetrical thin regions inz plane into the complex planeZ with aligned cuts on the real axis. The functionF(z, ε) is represented as a superposition of singularities on segments inside the thin regions. The resulting integral equation is integrated asymptotically by using the method developed in [1]. In the last section of the paper the given theory is applied to the conformal mapping of the domain exterior to two aligned thin ellipses.
    10 schema:genre research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N899d81455e9a435cbbc359d927b3b321
    14 Ne2230cf54c28439ba2c9c0bfb8f32a39
    15 sg:journal.1053636
    16 schema:name Conformal mapping of multiply connected domains exterior to thin regions
    17 schema:pagination 503-512
    18 schema:productId N6f9b85d1585e4dd2a6a73c172aa783e9
    19 Nb4d09945e2ab48c0bd2e875f5ec5aa5d
    20 Nc499a9198dad482a9a1a5c8e5ebfd365
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013837258
    22 https://doi.org/10.1007/bf00955699
    23 schema:sdDatePublished 2019-04-10T13:32
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N5537b98fee554d9e864bee43a481377d
    26 schema:url https://link.springer.com/10.1007%2FBF00955699
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N5537b98fee554d9e864bee43a481377d schema:name Springer Nature - SN SciGraph project
    31 rdf:type schema:Organization
    32 N6f9b85d1585e4dd2a6a73c172aa783e9 schema:name dimensions_id
    33 schema:value pub.1013837258
    34 rdf:type schema:PropertyValue
    35 N899d81455e9a435cbbc359d927b3b321 schema:issueNumber 4
    36 rdf:type schema:PublicationIssue
    37 Nb4d09945e2ab48c0bd2e875f5ec5aa5d schema:name readcube_id
    38 schema:value 41eafdf0a865a8dce9d86b197454ca4ef89788e008e7e245b1ceb1842a88fc2f
    39 rdf:type schema:PropertyValue
    40 Nb79fd3a1c42f4843886053c0812656c2 schema:name Central Institute of Mathematics, Bukarest, Roumania
    41 rdf:type schema:Organization
    42 Nb878854fb4684fd1abe2ee4cd75bc0ad rdf:first sg:person.0725407310.79
    43 rdf:rest rdf:nil
    44 Nc499a9198dad482a9a1a5c8e5ebfd365 schema:name doi
    45 schema:value 10.1007/bf00955699
    46 rdf:type schema:PropertyValue
    47 Ne2230cf54c28439ba2c9c0bfb8f32a39 schema:volumeNumber 33
    48 rdf:type schema:PublicationVolume
    49 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Information and Computing Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Artificial Intelligence and Image Processing
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1053636 schema:issn 0044-2275
    56 1420-9039
    57 schema:name Zeitschrift für angewandte Mathematik und Physik
    58 rdf:type schema:Periodical
    59 sg:person.0725407310.79 schema:affiliation Nb79fd3a1c42f4843886053c0812656c2
    60 schema:familyName Homentcovschi
    61 schema:givenName Dorel
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725407310.79
    63 rdf:type schema:Person
    64 sg:pub.10.1007/bf01590662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027853255
    65 https://doi.org/10.1007/bf01590662
    66 rdf:type schema:CreativeWork
    67 https://doi.org/10.1017/s0022112067001946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053929922
    68 rdf:type schema:CreativeWork
    69 https://doi.org/10.1137/0510112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847213
    70 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...