Asymptotic analysis and reaction-diffusion approximation forBGK kinetic models of chemical processes in multispecies gas mixtures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-09

AUTHORS

Renato Spigler, Damián H. Zanette

ABSTRACT

A BGK-type model is derived to describe the interaction between transport and chemical reactions in multispecies gas mixtures, at the kinetic level. The underlying kinetic process is modelled by a Fokker-Planck-type equation, in the Kramers-Smoluchowski limit. When the reaction terms in the kinetic equation are properly scaled, an expansion in powers of a small parameter related to the mean collison time yields a reaction-diffusion equation for the densities of the chemical species involved. For different scalings of the reaction terms, the related macroscopic equations describe the prevailing of transport processes on chemical reactions, orvice versa. The spatially homogeneous case with its own peculiarities is addressed, and the Selkov model is considered as an example. More... »

PAGES

812-827

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00942811

DOI

http://dx.doi.org/10.1007/bf00942811

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047502340


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Universit\u00e0 di Padova, Via Belzoni 7, 35131, Padova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Universit\u00e0 di Padova, Via Belzoni 7, 35131, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spigler", 
        "givenName": "Renato", 
        "id": "sg:person.01043332147.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043332147.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Grupo de Fis\u00edca Estad\u00edstica-Divisi\u00f3n Teor\u00eda, Centro At\u00f3mico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Grupo de Fis\u00edca Estad\u00edstica-Divisi\u00f3n Teor\u00eda, Centro At\u00f3mico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zanette", 
        "givenName": "Dami\u00e1n H.", 
        "id": "sg:person.0673125037.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673125037.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4684-0152-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045736858", 
          "https://doi.org/10.1007/978-1-4684-0152-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97269-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040040498", 
          "https://doi.org/10.1007/978-3-642-97269-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-93111-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036634600", 
          "https://doi.org/10.1007/978-3-642-93111-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1039-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022237469", 
          "https://doi.org/10.1007/978-1-4612-1039-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01379769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038229301", 
          "https://doi.org/10.1007/bf01379769"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-09", 
    "datePublishedReg": "1993-09-01", 
    "description": "A BGK-type model is derived to describe the interaction between transport and chemical reactions in multispecies gas mixtures, at the kinetic level. The underlying kinetic process is modelled by a Fokker-Planck-type equation, in the Kramers-Smoluchowski limit. When the reaction terms in the kinetic equation are properly scaled, an expansion in powers of a small parameter related to the mean collison time yields a reaction-diffusion equation for the densities of the chemical species involved. For different scalings of the reaction terms, the related macroscopic equations describe the prevailing of transport processes on chemical reactions, orvice versa. The spatially homogeneous case with its own peculiarities is addressed, and the Selkov model is considered as an example.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00942811", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053636", 
        "issn": [
          "0044-2275", 
          "1420-9039"
        ], 
        "name": "Zeitschrift f\u00fcr angewandte Mathematik und Physik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "chemical reactions", 
      "gas mixture", 
      "chemical species", 
      "chemical processes", 
      "BGK-type model", 
      "kinetic processes", 
      "kinetic model", 
      "reaction\u2013diffusion approximation", 
      "reaction", 
      "mixture", 
      "kinetic equation", 
      "transport processes", 
      "kinetic level", 
      "process", 
      "limit", 
      "interaction", 
      "density", 
      "Selkov model", 
      "species", 
      "transport", 
      "reaction term", 
      "prevailing", 
      "type equation", 
      "peculiarities", 
      "parameters", 
      "terms", 
      "analysis", 
      "equations", 
      "time", 
      "example", 
      "different scaling", 
      "own peculiarities", 
      "model", 
      "approximation", 
      "homogeneous case", 
      "expansion", 
      "power", 
      "cases", 
      "levels", 
      "scaling", 
      "reaction-diffusion equations", 
      "macroscopic equations", 
      "Fokker-Planck", 
      "asymptotic analysis", 
      "small parameter", 
      "multispecies gas mixtures", 
      "Kramers-Smoluchowski limit", 
      "mean collison time", 
      "collison time", 
      "related macroscopic equations"
    ], 
    "name": "Asymptotic analysis and reaction-diffusion approximation forBGK kinetic models of chemical processes in multispecies gas mixtures", 
    "pagination": "812-827", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047502340"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00942811"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00942811", 
      "https://app.dimensions.ai/details/publication/pub.1047502340"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_259.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00942811"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00942811'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00942811'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00942811'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00942811'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      22 PREDICATES      82 URIs      68 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00942811 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0105
4 schema:author Ncad244f793434b6492411b8b4c16f8a5
5 schema:citation sg:pub.10.1007/978-1-4612-1039-9
6 sg:pub.10.1007/978-1-4684-0152-3
7 sg:pub.10.1007/978-3-642-93111-6
8 sg:pub.10.1007/978-3-642-97269-0
9 sg:pub.10.1007/bf01379769
10 schema:datePublished 1993-09
11 schema:datePublishedReg 1993-09-01
12 schema:description A BGK-type model is derived to describe the interaction between transport and chemical reactions in multispecies gas mixtures, at the kinetic level. The underlying kinetic process is modelled by a Fokker-Planck-type equation, in the Kramers-Smoluchowski limit. When the reaction terms in the kinetic equation are properly scaled, an expansion in powers of a small parameter related to the mean collison time yields a reaction-diffusion equation for the densities of the chemical species involved. For different scalings of the reaction terms, the related macroscopic equations describe the prevailing of transport processes on chemical reactions, orvice versa. The spatially homogeneous case with its own peculiarities is addressed, and the Selkov model is considered as an example.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N37c85638d98b4efc91fcd553ec7d6eab
17 Naac97435a21e47c48fe4767bdeb486c1
18 sg:journal.1053636
19 schema:keywords BGK-type model
20 Fokker-Planck
21 Kramers-Smoluchowski limit
22 Selkov model
23 analysis
24 approximation
25 asymptotic analysis
26 cases
27 chemical processes
28 chemical reactions
29 chemical species
30 collison time
31 density
32 different scaling
33 equations
34 example
35 expansion
36 gas mixture
37 homogeneous case
38 interaction
39 kinetic equation
40 kinetic level
41 kinetic model
42 kinetic processes
43 levels
44 limit
45 macroscopic equations
46 mean collison time
47 mixture
48 model
49 multispecies gas mixtures
50 own peculiarities
51 parameters
52 peculiarities
53 power
54 prevailing
55 process
56 reaction
57 reaction term
58 reaction-diffusion equations
59 reaction–diffusion approximation
60 related macroscopic equations
61 scaling
62 small parameter
63 species
64 terms
65 time
66 transport
67 transport processes
68 type equation
69 schema:name Asymptotic analysis and reaction-diffusion approximation forBGK kinetic models of chemical processes in multispecies gas mixtures
70 schema:pagination 812-827
71 schema:productId N143c773aa83149758ddb94492c538033
72 Nd19285854f54463a86bae1f92bf9f402
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047502340
74 https://doi.org/10.1007/bf00942811
75 schema:sdDatePublished 2022-01-01T18:06
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N63e011c1f23540ed8a905709f42eda1c
78 schema:url https://doi.org/10.1007/bf00942811
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N143c773aa83149758ddb94492c538033 schema:name dimensions_id
83 schema:value pub.1047502340
84 rdf:type schema:PropertyValue
85 N37c85638d98b4efc91fcd553ec7d6eab schema:issueNumber 5
86 rdf:type schema:PublicationIssue
87 N63e011c1f23540ed8a905709f42eda1c schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Naac97435a21e47c48fe4767bdeb486c1 schema:volumeNumber 44
90 rdf:type schema:PublicationVolume
91 Ncad244f793434b6492411b8b4c16f8a5 rdf:first sg:person.01043332147.13
92 rdf:rest Nd71eaabdd803409d9f2b7fcdbdfedf2b
93 Nd19285854f54463a86bae1f92bf9f402 schema:name doi
94 schema:value 10.1007/bf00942811
95 rdf:type schema:PropertyValue
96 Nd71eaabdd803409d9f2b7fcdbdfedf2b rdf:first sg:person.0673125037.10
97 rdf:rest rdf:nil
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
102 schema:name Applied Mathematics
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
105 schema:name Mathematical Physics
106 rdf:type schema:DefinedTerm
107 sg:journal.1053636 schema:issn 0044-2275
108 1420-9039
109 schema:name Zeitschrift für angewandte Mathematik und Physik
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.01043332147.13 schema:affiliation grid-institutes:grid.5608.b
113 schema:familyName Spigler
114 schema:givenName Renato
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043332147.13
116 rdf:type schema:Person
117 sg:person.0673125037.10 schema:affiliation grid-institutes:None
118 schema:familyName Zanette
119 schema:givenName Damián H.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673125037.10
121 rdf:type schema:Person
122 sg:pub.10.1007/978-1-4612-1039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022237469
123 https://doi.org/10.1007/978-1-4612-1039-9
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-1-4684-0152-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045736858
126 https://doi.org/10.1007/978-1-4684-0152-3
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/978-3-642-93111-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036634600
129 https://doi.org/10.1007/978-3-642-93111-6
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/978-3-642-97269-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040040498
132 https://doi.org/10.1007/978-3-642-97269-0
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bf01379769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038229301
135 https://doi.org/10.1007/bf01379769
136 rdf:type schema:CreativeWork
137 grid-institutes:None schema:alternateName Grupo de Fisíca Estadística-División Teoría, Centro Atómico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina
138 schema:name Grupo de Fisíca Estadística-División Teoría, Centro Atómico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina
139 rdf:type schema:Organization
140 grid-institutes:grid.5608.b schema:alternateName Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Padova, Via Belzoni 7, 35131, Padova, Italy
141 schema:name Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Padova, Via Belzoni 7, 35131, Padova, Italy
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...