Properties of the optimal trajectories for coplanar, aeroassisted orbital transfer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1991-04

AUTHORS

A. Miele, T. Wang, A. W. Deaton

ABSTRACT

This paper is concerned with the optimization of trajectories for coplanar, aeroassisted orbital transfer (AOT) from a high Earth orbit (HEO) to a low Earth orbit (LEO). In particular, HEO can be a geosynchronous Earth orbit (GEO). It is assumed that the initial and final orbits are circular, that the gravitational field is central and is governed by the inverse square law, and that two impulses are employed, one at HEO exit and one at LEO entry. During the atmospheric pass, the trajectory is controlled via the lift coefficient in such a way that the total characteristic velocity is minimized.First, an ideal optimal trajectory is determined analytically for lift coefficient unbounded. This trajectory is called grazing trajectory, because the atmospheric pass is made by flying at constant altitude along the edge of the atmosphere until the excess velocity is depleted. For the grazing trajectory, the lift coefficient varies in such a way that the lift, the centrifugal force due to the Earth's curvature, the weight, and the Coriolis force due to the Earth's rotation are in static balance. Also, the grazing trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, the dynamic pressure, and the heating rate.Next, starting from the grazing trajectory results, a real optimal trajectory is determined numerically for lift coefficient bounded from both below and above. This trajectory is characterized by atmospheric penetration with the smallest possible entry angle, followed by flight at the lift coefficient lower bound. Consistently with the grazing trajectory behavior, the real optimal trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, the dynamic pressure, and the heating rate. More... »

PAGES

1-30

References to SciGraph publications

  • 1987-01. Optimal trajectories for aeroassisted, coplanar orbital transfer in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00940459

    DOI

    http://dx.doi.org/10.1007/bf00940459

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053252705


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miele", 
            "givenName": "A.", 
            "id": "sg:person.015552732657.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "T.", 
            "id": "sg:person.014414570607.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Flight Mechanics Branch, Systems Analysis and Integration Laboratory, NASA Marshall Space Flight Center, Huntsville, Alabama", 
              "id": "http://www.grid.ac/institutes/grid.419091.4", 
              "name": [
                "Flight Mechanics Branch, Systems Analysis and Integration Laboratory, NASA Marshall Space Flight Center, Huntsville, Alabama"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deaton", 
            "givenName": "A. W.", 
            "id": "sg:person.013453156653.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013453156653.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00938462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034963806", 
              "https://doi.org/10.1007/bf00938462"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-04", 
        "datePublishedReg": "1991-04-01", 
        "description": "This paper is concerned with the optimization of trajectories for coplanar, aeroassisted orbital transfer (AOT) from a high Earth orbit (HEO) to a low Earth orbit (LEO). In particular, HEO can be a geosynchronous Earth orbit (GEO). It is assumed that the initial and final orbits are circular, that the gravitational field is central and is governed by the inverse square law, and that two impulses are employed, one at HEO exit and one at LEO entry. During the atmospheric pass, the trajectory is controlled via the lift coefficient in such a way that the total characteristic velocity is minimized.First, an ideal optimal trajectory is determined analytically for lift coefficient unbounded. This trajectory is called grazing trajectory, because the atmospheric pass is made by flying at constant altitude along the edge of the atmosphere until the excess velocity is depleted. For the grazing trajectory, the lift coefficient varies in such a way that the lift, the centrifugal force due to the Earth's curvature, the weight, and the Coriolis force due to the Earth's rotation are in static balance. Also, the grazing trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, the dynamic pressure, and the heating rate.Next, starting from the grazing trajectory results, a real optimal trajectory is determined numerically for lift coefficient bounded from both below and above. This trajectory is characterized by atmospheric penetration with the smallest possible entry angle, followed by flight at the lift coefficient lower bound. Consistently with the grazing trajectory behavior, the real optimal trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, the dynamic pressure, and the heating rate.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00940459", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1044187", 
            "issn": [
              "0022-3239", 
              "1573-2878"
            ], 
            "name": "Journal of Optimization Theory and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "69"
          }
        ], 
        "keywords": [
          "high Earth orbit", 
          "total characteristic velocity", 
          "optimal trajectories", 
          "optimization of trajectories", 
          "orbital transfer", 
          "geosynchronous Earth orbit", 
          "atmospheric pass", 
          "lift coefficient", 
          "characteristic velocity", 
          "altitude drop", 
          "trajectories", 
          "Earth orbit", 
          "orbit", 
          "low Earth orbit", 
          "final orbit", 
          "gravitational field", 
          "inverse square law", 
          "square law", 
          "velocity", 
          "excess velocity", 
          "earth curvature", 
          "Coriolis force", 
          "Earth's rotation", 
          "dynamic pressure", 
          "trajectory results", 
          "trajectory behavior", 
          "optimization", 
          "field", 
          "law", 
          "coefficient", 
          "constant altitude", 
          "coefficient varies", 
          "centrifugal force", 
          "force", 
          "curvature", 
          "rotation", 
          "peak value", 
          "heating rate", 
          "entry angle", 
          "coplanar", 
          "transfer", 
          "impulses", 
          "pass", 
          "way", 
          "altitude", 
          "edge", 
          "atmosphere", 
          "grazing trajectory", 
          "lift", 
          "values", 
          "drop", 
          "pressure", 
          "results", 
          "atmospheric penetration", 
          "penetration", 
          "angle", 
          "flight", 
          "behavior", 
          "minimizes", 
          "properties", 
          "exit", 
          "entry", 
          "varies", 
          "weight", 
          "static balance", 
          "balance", 
          "rate", 
          "grazing", 
          "paper"
        ], 
        "name": "Properties of the optimal trajectories for coplanar, aeroassisted orbital transfer", 
        "pagination": "1-30", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053252705"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00940459"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00940459", 
          "https://app.dimensions.ai/details/publication/pub.1053252705"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_242.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00940459"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00940459'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00940459'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00940459'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00940459'


     

    This table displays all metadata directly associated to this object as RDF triples.

    159 TRIPLES      21 PREDICATES      98 URIs      86 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00940459 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:0103
    4 anzsrc-for:09
    5 anzsrc-for:0906
    6 schema:author Nfef3f9e6bf70474eaf2877a92d437700
    7 schema:citation sg:pub.10.1007/bf00938462
    8 schema:datePublished 1991-04
    9 schema:datePublishedReg 1991-04-01
    10 schema:description This paper is concerned with the optimization of trajectories for coplanar, aeroassisted orbital transfer (AOT) from a high Earth orbit (HEO) to a low Earth orbit (LEO). In particular, HEO can be a geosynchronous Earth orbit (GEO). It is assumed that the initial and final orbits are circular, that the gravitational field is central and is governed by the inverse square law, and that two impulses are employed, one at HEO exit and one at LEO entry. During the atmospheric pass, the trajectory is controlled via the lift coefficient in such a way that the total characteristic velocity is minimized.First, an ideal optimal trajectory is determined analytically for lift coefficient unbounded. This trajectory is called grazing trajectory, because the atmospheric pass is made by flying at constant altitude along the edge of the atmosphere until the excess velocity is depleted. For the grazing trajectory, the lift coefficient varies in such a way that the lift, the centrifugal force due to the Earth's curvature, the weight, and the Coriolis force due to the Earth's rotation are in static balance. Also, the grazing trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, the dynamic pressure, and the heating rate.Next, starting from the grazing trajectory results, a real optimal trajectory is determined numerically for lift coefficient bounded from both below and above. This trajectory is characterized by atmospheric penetration with the smallest possible entry angle, followed by flight at the lift coefficient lower bound. Consistently with the grazing trajectory behavior, the real optimal trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, the dynamic pressure, and the heating rate.
    11 schema:genre article
    12 schema:isAccessibleForFree true
    13 schema:isPartOf Nabc29b5589bd4cfba9c90ac2be338e55
    14 Ne7898dcbc6cd4b6b9c5c9d1e96b7f8b1
    15 sg:journal.1044187
    16 schema:keywords Coriolis force
    17 Earth orbit
    18 Earth's rotation
    19 altitude
    20 altitude drop
    21 angle
    22 atmosphere
    23 atmospheric pass
    24 atmospheric penetration
    25 balance
    26 behavior
    27 centrifugal force
    28 characteristic velocity
    29 coefficient
    30 coefficient varies
    31 constant altitude
    32 coplanar
    33 curvature
    34 drop
    35 dynamic pressure
    36 earth curvature
    37 edge
    38 entry
    39 entry angle
    40 excess velocity
    41 exit
    42 field
    43 final orbit
    44 flight
    45 force
    46 geosynchronous Earth orbit
    47 gravitational field
    48 grazing
    49 grazing trajectory
    50 heating rate
    51 high Earth orbit
    52 impulses
    53 inverse square law
    54 law
    55 lift
    56 lift coefficient
    57 low Earth orbit
    58 minimizes
    59 optimal trajectories
    60 optimization
    61 optimization of trajectories
    62 orbit
    63 orbital transfer
    64 paper
    65 pass
    66 peak value
    67 penetration
    68 pressure
    69 properties
    70 rate
    71 results
    72 rotation
    73 square law
    74 static balance
    75 total characteristic velocity
    76 trajectories
    77 trajectory behavior
    78 trajectory results
    79 transfer
    80 values
    81 varies
    82 velocity
    83 way
    84 weight
    85 schema:name Properties of the optimal trajectories for coplanar, aeroassisted orbital transfer
    86 schema:pagination 1-30
    87 schema:productId N0f6aaa3d2f214e6290db199e1c4e1739
    88 N1a8c9fba6f8a44fdb2d0cfda088de468
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053252705
    90 https://doi.org/10.1007/bf00940459
    91 schema:sdDatePublished 2022-12-01T06:20
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher N3c07f15a9ba647edb52ac5666d39c695
    94 schema:url https://doi.org/10.1007/bf00940459
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N0b725ef970d6436292d5bde91056b4d0 rdf:first sg:person.013453156653.03
    99 rdf:rest rdf:nil
    100 N0f6aaa3d2f214e6290db199e1c4e1739 schema:name doi
    101 schema:value 10.1007/bf00940459
    102 rdf:type schema:PropertyValue
    103 N1a8c9fba6f8a44fdb2d0cfda088de468 schema:name dimensions_id
    104 schema:value pub.1053252705
    105 rdf:type schema:PropertyValue
    106 N3c07f15a9ba647edb52ac5666d39c695 schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 Nabc29b5589bd4cfba9c90ac2be338e55 schema:volumeNumber 69
    109 rdf:type schema:PublicationVolume
    110 Nb6d3995ff68c4cdb8619734e26cb43cb rdf:first sg:person.014414570607.44
    111 rdf:rest N0b725ef970d6436292d5bde91056b4d0
    112 Ne7898dcbc6cd4b6b9c5c9d1e96b7f8b1 schema:issueNumber 1
    113 rdf:type schema:PublicationIssue
    114 Nfef3f9e6bf70474eaf2877a92d437700 rdf:first sg:person.015552732657.49
    115 rdf:rest Nb6d3995ff68c4cdb8619734e26cb43cb
    116 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Mathematical Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Applied Mathematics
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Numerical and Computational Mathematics
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Engineering
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Electrical and Electronic Engineering
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1044187 schema:issn 0022-3239
    132 1573-2878
    133 schema:name Journal of Optimization Theory and Applications
    134 schema:publisher Springer Nature
    135 rdf:type schema:Periodical
    136 sg:person.013453156653.03 schema:affiliation grid-institutes:grid.419091.4
    137 schema:familyName Deaton
    138 schema:givenName A. W.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013453156653.03
    140 rdf:type schema:Person
    141 sg:person.014414570607.44 schema:affiliation grid-institutes:grid.21940.3e
    142 schema:familyName Wang
    143 schema:givenName T.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44
    145 rdf:type schema:Person
    146 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
    147 schema:familyName Miele
    148 schema:givenName A.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
    150 rdf:type schema:Person
    151 sg:pub.10.1007/bf00938462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034963806
    152 https://doi.org/10.1007/bf00938462
    153 rdf:type schema:CreativeWork
    154 grid-institutes:grid.21940.3e schema:alternateName Aero-Astronautics Group, Rice University, Houston, Texas
    155 schema:name Aero-Astronautics Group, Rice University, Houston, Texas
    156 rdf:type schema:Organization
    157 grid-institutes:grid.419091.4 schema:alternateName Flight Mechanics Branch, Systems Analysis and Integration Laboratory, NASA Marshall Space Flight Center, Huntsville, Alabama
    158 schema:name Flight Mechanics Branch, Systems Analysis and Integration Laboratory, NASA Marshall Space Flight Center, Huntsville, Alabama
    159 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...