New general guidance method in constrained optimal control, part 1: Numerical method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-12

AUTHORS

B. Kugelmann, H. J. Pesch

ABSTRACT

A very fast numerical method is developed for the computation of neighboring optimum feedback controls. This method is applicable to a general class of optimal control problems (for example, problems including inequality constraints and discontinuities) and needs no on-line computation, except for one matrix-vector multiplication. The method is based on the so-called accessory minimum problem. The necessary conditions for this auxiliary optimal control problem form a linear multipoint boundary-value problem with linear jump conditions, which is especially well suited for numerical treatment. In the second part of this paper, the performance of the guidance scheme is shown for the heating-constrained cross-range maximization problem of a space-shuttle-orbiter-type vehicle. More... »

PAGES

421-435

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00939642

DOI

http://dx.doi.org/10.1007/bf00939642

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049274643


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Technology, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Mathematics, University of Technology, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kugelmann", 
        "givenName": "B.", 
        "id": "sg:person.011134607226.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011134607226.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Computer Science, University of the Armed Forces, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, University of Technology, Munich, Germany", 
            "Faculty of Computer Science, University of the Armed Forces, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "H. J.", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01442556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044405249", 
          "https://doi.org/10.1007/bf01442556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-5592-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004061796", 
          "https://doi.org/10.1007/978-1-4757-5592-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02346169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008546684", 
          "https://doi.org/10.1007/bf02346169"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-12", 
    "datePublishedReg": "1990-12-01", 
    "description": "A very fast numerical method is developed for the computation of neighboring optimum feedback controls. This method is applicable to a general class of optimal control problems (for example, problems including inequality constraints and discontinuities) and needs no on-line computation, except for one matrix-vector multiplication. The method is based on the so-called accessory minimum problem. The necessary conditions for this auxiliary optimal control problem form a linear multipoint boundary-value problem with linear jump conditions, which is especially well suited for numerical treatment. In the second part of this paper, the performance of the guidance scheme is shown for the heating-constrained cross-range maximization problem of a space-shuttle-orbiter-type vehicle.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00939642", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044187", 
        "issn": [
          "0022-3239", 
          "1573-2878"
        ], 
        "name": "Journal of Optimization Theory and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "keywords": [
      "optimal control problem", 
      "control problem", 
      "auxiliary optimal control problem", 
      "numerical method", 
      "multipoint boundary value problem", 
      "accessory minimum problem", 
      "fast numerical method", 
      "boundary value problem", 
      "matrix-vector multiplication", 
      "optimal control", 
      "line computation", 
      "numerical treatment", 
      "feedback control", 
      "general class", 
      "jump conditions", 
      "guidance scheme", 
      "maximization problem", 
      "minimum problem", 
      "necessary condition", 
      "computation", 
      "problem", 
      "second part", 
      "guidance method", 
      "scheme", 
      "class", 
      "Part 1", 
      "multiplication", 
      "conditions", 
      "control", 
      "performance", 
      "vehicles", 
      "part", 
      "method", 
      "treatment", 
      "paper"
    ], 
    "name": "New general guidance method in constrained optimal control, part 1: Numerical method", 
    "pagination": "421-435", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049274643"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00939642"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00939642", 
      "https://app.dimensions.ai/details/publication/pub.1049274643"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_225.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00939642"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00939642'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00939642'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00939642'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00939642'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      63 URIs      52 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00939642 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nc6006e45f0124519ab6458da50e2797b
4 schema:citation sg:pub.10.1007/978-1-4757-5592-3
5 sg:pub.10.1007/bf01442556
6 sg:pub.10.1007/bf02346169
7 schema:datePublished 1990-12
8 schema:datePublishedReg 1990-12-01
9 schema:description A very fast numerical method is developed for the computation of neighboring optimum feedback controls. This method is applicable to a general class of optimal control problems (for example, problems including inequality constraints and discontinuities) and needs no on-line computation, except for one matrix-vector multiplication. The method is based on the so-called accessory minimum problem. The necessary conditions for this auxiliary optimal control problem form a linear multipoint boundary-value problem with linear jump conditions, which is especially well suited for numerical treatment. In the second part of this paper, the performance of the guidance scheme is shown for the heating-constrained cross-range maximization problem of a space-shuttle-orbiter-type vehicle.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N7e54fb0e96754564b0d741fe4b2c4993
13 Nd5f3fdee94fd47939674deffcf7991ca
14 sg:journal.1044187
15 schema:keywords Part 1
16 accessory minimum problem
17 auxiliary optimal control problem
18 boundary value problem
19 class
20 computation
21 conditions
22 control
23 control problem
24 fast numerical method
25 feedback control
26 general class
27 guidance method
28 guidance scheme
29 jump conditions
30 line computation
31 matrix-vector multiplication
32 maximization problem
33 method
34 minimum problem
35 multiplication
36 multipoint boundary value problem
37 necessary condition
38 numerical method
39 numerical treatment
40 optimal control
41 optimal control problem
42 paper
43 part
44 performance
45 problem
46 scheme
47 second part
48 treatment
49 vehicles
50 schema:name New general guidance method in constrained optimal control, part 1: Numerical method
51 schema:pagination 421-435
52 schema:productId N2a3cb4f4d7e047ebb4311dfdd8cfc214
53 N50c3b59635bf41e9b40a7a5c97828c74
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049274643
55 https://doi.org/10.1007/bf00939642
56 schema:sdDatePublished 2022-09-02T15:47
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nc8101ad4bbea4ff59c3e7c23f4e3c649
59 schema:url https://doi.org/10.1007/bf00939642
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N2a3cb4f4d7e047ebb4311dfdd8cfc214 schema:name dimensions_id
64 schema:value pub.1049274643
65 rdf:type schema:PropertyValue
66 N4c96fe8a8b2243fb9870c06ad375688d rdf:first sg:person.014543723551.22
67 rdf:rest rdf:nil
68 N50c3b59635bf41e9b40a7a5c97828c74 schema:name doi
69 schema:value 10.1007/bf00939642
70 rdf:type schema:PropertyValue
71 N7e54fb0e96754564b0d741fe4b2c4993 schema:issueNumber 3
72 rdf:type schema:PublicationIssue
73 Nc6006e45f0124519ab6458da50e2797b rdf:first sg:person.011134607226.14
74 rdf:rest N4c96fe8a8b2243fb9870c06ad375688d
75 Nc8101ad4bbea4ff59c3e7c23f4e3c649 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nd5f3fdee94fd47939674deffcf7991ca schema:volumeNumber 67
78 rdf:type schema:PublicationVolume
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
83 schema:name Applied Mathematics
84 rdf:type schema:DefinedTerm
85 sg:journal.1044187 schema:issn 0022-3239
86 1573-2878
87 schema:name Journal of Optimization Theory and Applications
88 schema:publisher Springer Nature
89 rdf:type schema:Periodical
90 sg:person.011134607226.14 schema:affiliation grid-institutes:grid.6936.a
91 schema:familyName Kugelmann
92 schema:givenName B.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011134607226.14
94 rdf:type schema:Person
95 sg:person.014543723551.22 schema:affiliation grid-institutes:None
96 schema:familyName Pesch
97 schema:givenName H. J.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
99 rdf:type schema:Person
100 sg:pub.10.1007/978-1-4757-5592-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004061796
101 https://doi.org/10.1007/978-1-4757-5592-3
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01442556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044405249
104 https://doi.org/10.1007/bf01442556
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02346169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008546684
107 https://doi.org/10.1007/bf02346169
108 rdf:type schema:CreativeWork
109 grid-institutes:None schema:alternateName Faculty of Computer Science, University of the Armed Forces, Munich, Germany
110 schema:name Department of Mathematics, University of Technology, Munich, Germany
111 Faculty of Computer Science, University of the Armed Forces, Munich, Germany
112 rdf:type schema:Organization
113 grid-institutes:grid.6936.a schema:alternateName Department of Mathematics, University of Technology, Munich, Germany
114 schema:name Department of Mathematics, University of Technology, Munich, Germany
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...