Guidance strategies for near-optimum take-off performance in a windshear View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-07

AUTHORS

A. Miele, T. Wang, W. W. Melvin

ABSTRACT

This paper is concerned with guidance strategies for near-optimum performance in a windshear. This is a wind characterized by sharp change in intensity and direction over a relatively small region of space. The take-off problem is considered with reference to flight in a vertical plane.First, trajectories for optimum performance in a windshear are determined for different windshear models and different windshear intensities. Use is made of the methods of optimal control theory in conjunction with the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. In this approach, global information on the wind flow field is needed.Then, guidance strategies for near-optimum performance in a wind-shear are developed, starting from the optimal trajectories. Specifically, three guidance schemes are presented: (A) gamma guidance, based on the relative path inclination; (B) theta guidance, based on the pitch attitude angle; and (C) acceleration guidance, based on the relative acceleration. In this approach, local information on the wind flow field is needed.Next, several alternative schemes are investigated for the sake of completeness, more specifically: (D) constant alpha guidance; (E) constant velocity guidance; (F) constant theta guidance; (G) constant relative path inclination guidance; (H) constant absolute path inclination guidance; and (I) linear altitude distribution guidance.Numerical experiments show that guidance schemes (A)–(C) produce trajectories which are quite close to the optimum trajectories. In addition, the near-optimum trajectories associated with guidance schemes (A)–(C) are considerably superior to the trajectories arising from the alternative guidance schemes (D)–(I).An important characteristic of guidance schemes (A)–(C) is their simplicity. Indeed, these guidance schemes are implementable using available instrumentation and/or modification of available instrumentation. More... »

PAGES

1-47

References to SciGraph publications

  • 1982-09. Numerical solution of minimax problems of optimal control, part 1 in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1970-04. Sequential gradient-restoration algorithm for optimal control problems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1982-09. Numerical solution of minimax problems of optimal control, part 2 in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1975-12. Recent advances in gradient algorithms for optimal control problems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1980-09. A property of an autonomous minimax optimal control problem in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1986-04. Optimal take-off trajectories in the presence of windshear in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1974-02. Sequential gradient-restoration algorithm for optimal control problems with nondifferential constraints in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1978-11. Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1985. Minimax Optimal Control and Its Application to the Reentry of a Space Glider in RECENT ADVANCES IN THE AEROSPACE SCIENCES
  • 1979-07. A minimax optimal control problem in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1981. The Calculus of Variations and Optimal Control, An Introduction in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00938475

    DOI

    http://dx.doi.org/10.1007/bf00938475

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005655216


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miele", 
            "givenName": "A.", 
            "id": "sg:person.015552732657.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "T.", 
            "id": "sg:person.014414570607.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Airworthiness and Performance Committee, Air Line Pilots Association (ALPA), Washington, DC", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Delta Airlines, Atlanta, Georgia", 
                "Airworthiness and Performance Committee, Air Line Pilots Association (ALPA), Washington, DC"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Melvin", 
            "givenName": "W. W.", 
            "id": "sg:person.011027201155.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011027201155.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00932781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017158292", 
              "https://doi.org/10.1007/bf00932781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00933382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052985279", 
              "https://doi.org/10.1007/bf00933382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00934326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003560413", 
              "https://doi.org/10.1007/bf00934326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00927913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010952160", 
              "https://doi.org/10.1007/bf00927913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00933463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007322541", 
              "https://doi.org/10.1007/bf00933463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00935541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049352093", 
              "https://doi.org/10.1007/bf00935541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-0333-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032045962", 
              "https://doi.org/10.1007/978-1-4899-0333-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00939246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016081985", 
              "https://doi.org/10.1007/bf00939246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00934844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028989281", 
              "https://doi.org/10.1007/bf00934844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-4298-4_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001250863", 
              "https://doi.org/10.1007/978-1-4684-4298-4_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00934325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028019692", 
              "https://doi.org/10.1007/bf00934325"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1986-07", 
        "datePublishedReg": "1986-07-01", 
        "description": "This paper is concerned with guidance strategies for near-optimum performance in a windshear. This is a wind characterized by sharp change in intensity and direction over a relatively small region of space. The take-off problem is considered with reference to flight in a vertical plane.First, trajectories for optimum performance in a windshear are determined for different windshear models and different windshear intensities. Use is made of the methods of optimal control theory in conjunction with the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. In this approach, global information on the wind flow field is needed.Then, guidance strategies for near-optimum performance in a wind-shear are developed, starting from the optimal trajectories. Specifically, three guidance schemes are presented: (A) gamma guidance, based on the relative path inclination; (B) theta guidance, based on the pitch attitude angle; and (C) acceleration guidance, based on the relative acceleration. In this approach, local information on the wind flow field is needed.Next, several alternative schemes are investigated for the sake of completeness, more specifically: (D) constant alpha guidance; (E) constant velocity guidance; (F) constant theta guidance; (G) constant relative path inclination guidance; (H) constant absolute path inclination guidance; and (I) linear altitude distribution guidance.Numerical experiments show that guidance schemes (A)\u2013(C) produce trajectories which are quite close to the optimum trajectories. In addition, the near-optimum trajectories associated with guidance schemes (A)\u2013(C) are considerably superior to the trajectories arising from the alternative guidance schemes (D)\u2013(I).An important characteristic of guidance schemes (A)\u2013(C) is their simplicity. Indeed, these guidance schemes are implementable using available instrumentation and/or modification of available instrumentation.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00938475", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1044187", 
            "issn": [
              "0022-3239", 
              "1573-2878"
            ], 
            "name": "Journal of Optimization Theory and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "50"
          }
        ], 
        "keywords": [
          "dual sequential gradient-restoration algorithm", 
          "guidance scheme", 
          "optimal control problem", 
          "optimal control theory", 
          "sequential gradient-restoration algorithm", 
          "gradient-restoration algorithm", 
          "optimum trajectory", 
          "flow field", 
          "control problem", 
          "windshear intensities", 
          "wind flow field", 
          "control theory", 
          "sake of completeness", 
          "optimal trajectories", 
          "numerical experiments", 
          "pitch attitude angle", 
          "path inclination", 
          "optimum performance", 
          "relative acceleration", 
          "alternative scheme", 
          "scheme", 
          "windshear", 
          "guidance strategy", 
          "attitude angle", 
          "trajectories", 
          "local information", 
          "global information", 
          "small region", 
          "sharp change", 
          "problem", 
          "vertical plane", 
          "field", 
          "theory", 
          "space", 
          "algorithm", 
          "important characteristics", 
          "approach", 
          "optimum", 
          "performance", 
          "plane", 
          "simplicity", 
          "acceleration", 
          "model", 
          "available instrumentation", 
          "wind", 
          "direction", 
          "completeness", 
          "angle", 
          "sake", 
          "intensity", 
          "information", 
          "inclination", 
          "flight", 
          "conjunction", 
          "experiments", 
          "instrumentation", 
          "reference", 
          "strategies", 
          "region", 
          "characteristics", 
          "guidance", 
          "modification", 
          "use", 
          "addition", 
          "changes", 
          "method", 
          "paper"
        ], 
        "name": "Guidance strategies for near-optimum take-off performance in a windshear", 
        "pagination": "1-47", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005655216"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00938475"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00938475", 
          "https://app.dimensions.ai/details/publication/pub.1005655216"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_184.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00938475"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00938475'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00938475'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00938475'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00938475'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      21 PREDICATES      103 URIs      84 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00938475 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N5627aeb5ee404a52b6a1fbac4f8a3ed9
    4 schema:citation sg:pub.10.1007/978-1-4684-4298-4_2
    5 sg:pub.10.1007/978-1-4899-0333-4
    6 sg:pub.10.1007/bf00927913
    7 sg:pub.10.1007/bf00932781
    8 sg:pub.10.1007/bf00933382
    9 sg:pub.10.1007/bf00933463
    10 sg:pub.10.1007/bf00934325
    11 sg:pub.10.1007/bf00934326
    12 sg:pub.10.1007/bf00934844
    13 sg:pub.10.1007/bf00935541
    14 sg:pub.10.1007/bf00939246
    15 schema:datePublished 1986-07
    16 schema:datePublishedReg 1986-07-01
    17 schema:description This paper is concerned with guidance strategies for near-optimum performance in a windshear. This is a wind characterized by sharp change in intensity and direction over a relatively small region of space. The take-off problem is considered with reference to flight in a vertical plane.First, trajectories for optimum performance in a windshear are determined for different windshear models and different windshear intensities. Use is made of the methods of optimal control theory in conjunction with the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. In this approach, global information on the wind flow field is needed.Then, guidance strategies for near-optimum performance in a wind-shear are developed, starting from the optimal trajectories. Specifically, three guidance schemes are presented: (A) gamma guidance, based on the relative path inclination; (B) theta guidance, based on the pitch attitude angle; and (C) acceleration guidance, based on the relative acceleration. In this approach, local information on the wind flow field is needed.Next, several alternative schemes are investigated for the sake of completeness, more specifically: (D) constant alpha guidance; (E) constant velocity guidance; (F) constant theta guidance; (G) constant relative path inclination guidance; (H) constant absolute path inclination guidance; and (I) linear altitude distribution guidance.Numerical experiments show that guidance schemes (A)–(C) produce trajectories which are quite close to the optimum trajectories. In addition, the near-optimum trajectories associated with guidance schemes (A)–(C) are considerably superior to the trajectories arising from the alternative guidance schemes (D)–(I).An important characteristic of guidance schemes (A)–(C) is their simplicity. Indeed, these guidance schemes are implementable using available instrumentation and/or modification of available instrumentation.
    18 schema:genre article
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N3bfe9fe21f2744e0a3a69f75131787c2
    21 N833e15ac1573463da0c8c6a5857679b0
    22 sg:journal.1044187
    23 schema:keywords acceleration
    24 addition
    25 algorithm
    26 alternative scheme
    27 angle
    28 approach
    29 attitude angle
    30 available instrumentation
    31 changes
    32 characteristics
    33 completeness
    34 conjunction
    35 control problem
    36 control theory
    37 direction
    38 dual sequential gradient-restoration algorithm
    39 experiments
    40 field
    41 flight
    42 flow field
    43 global information
    44 gradient-restoration algorithm
    45 guidance
    46 guidance scheme
    47 guidance strategy
    48 important characteristics
    49 inclination
    50 information
    51 instrumentation
    52 intensity
    53 local information
    54 method
    55 model
    56 modification
    57 numerical experiments
    58 optimal control problem
    59 optimal control theory
    60 optimal trajectories
    61 optimum
    62 optimum performance
    63 optimum trajectory
    64 paper
    65 path inclination
    66 performance
    67 pitch attitude angle
    68 plane
    69 problem
    70 reference
    71 region
    72 relative acceleration
    73 sake
    74 sake of completeness
    75 scheme
    76 sequential gradient-restoration algorithm
    77 sharp change
    78 simplicity
    79 small region
    80 space
    81 strategies
    82 theory
    83 trajectories
    84 use
    85 vertical plane
    86 wind
    87 wind flow field
    88 windshear
    89 windshear intensities
    90 schema:name Guidance strategies for near-optimum take-off performance in a windshear
    91 schema:pagination 1-47
    92 schema:productId N7b774f12840d4aceb17fec3582eb2ac8
    93 Nb86f62cc3c3244438c902b064bb27fe4
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005655216
    95 https://doi.org/10.1007/bf00938475
    96 schema:sdDatePublished 2022-10-01T06:27
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher N82f6f110d8314342aa0405828d061cf8
    99 schema:url https://doi.org/10.1007/bf00938475
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N3bfe9fe21f2744e0a3a69f75131787c2 schema:issueNumber 1
    104 rdf:type schema:PublicationIssue
    105 N5627aeb5ee404a52b6a1fbac4f8a3ed9 rdf:first sg:person.015552732657.49
    106 rdf:rest Nc383370d821e4bf4a9ddd3966dec875c
    107 N7b774f12840d4aceb17fec3582eb2ac8 schema:name dimensions_id
    108 schema:value pub.1005655216
    109 rdf:type schema:PropertyValue
    110 N82f6f110d8314342aa0405828d061cf8 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 N833e15ac1573463da0c8c6a5857679b0 schema:volumeNumber 50
    113 rdf:type schema:PublicationVolume
    114 Nb86f62cc3c3244438c902b064bb27fe4 schema:name doi
    115 schema:value 10.1007/bf00938475
    116 rdf:type schema:PropertyValue
    117 Nc383370d821e4bf4a9ddd3966dec875c rdf:first sg:person.014414570607.44
    118 rdf:rest Nefb74a690d3f45f2926ece27db67c519
    119 Nefb74a690d3f45f2926ece27db67c519 rdf:first sg:person.011027201155.13
    120 rdf:rest rdf:nil
    121 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Mathematical Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Applied Mathematics
    126 rdf:type schema:DefinedTerm
    127 sg:journal.1044187 schema:issn 0022-3239
    128 1573-2878
    129 schema:name Journal of Optimization Theory and Applications
    130 schema:publisher Springer Nature
    131 rdf:type schema:Periodical
    132 sg:person.011027201155.13 schema:affiliation grid-institutes:None
    133 schema:familyName Melvin
    134 schema:givenName W. W.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011027201155.13
    136 rdf:type schema:Person
    137 sg:person.014414570607.44 schema:affiliation grid-institutes:grid.21940.3e
    138 schema:familyName Wang
    139 schema:givenName T.
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44
    141 rdf:type schema:Person
    142 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
    143 schema:familyName Miele
    144 schema:givenName A.
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
    146 rdf:type schema:Person
    147 sg:pub.10.1007/978-1-4684-4298-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001250863
    148 https://doi.org/10.1007/978-1-4684-4298-4_2
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-1-4899-0333-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032045962
    151 https://doi.org/10.1007/978-1-4899-0333-4
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf00927913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010952160
    154 https://doi.org/10.1007/bf00927913
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bf00932781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017158292
    157 https://doi.org/10.1007/bf00932781
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf00933382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052985279
    160 https://doi.org/10.1007/bf00933382
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf00933463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007322541
    163 https://doi.org/10.1007/bf00933463
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bf00934325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028019692
    166 https://doi.org/10.1007/bf00934325
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf00934326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003560413
    169 https://doi.org/10.1007/bf00934326
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/bf00934844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028989281
    172 https://doi.org/10.1007/bf00934844
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/bf00935541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049352093
    175 https://doi.org/10.1007/bf00935541
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/bf00939246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016081985
    178 https://doi.org/10.1007/bf00939246
    179 rdf:type schema:CreativeWork
    180 grid-institutes:None schema:alternateName Airworthiness and Performance Committee, Air Line Pilots Association (ALPA), Washington, DC
    181 schema:name Airworthiness and Performance Committee, Air Line Pilots Association (ALPA), Washington, DC
    182 Delta Airlines, Atlanta, Georgia
    183 rdf:type schema:Organization
    184 grid-institutes:grid.21940.3e schema:alternateName Aero-Astronautics Group, Rice University, Houston, Texas
    185 schema:name Aero-Astronautics Group, Rice University, Houston, Texas
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...