Supplementary optimality properties of the restoration phase of sequential gradient-restoration algorithms for optimal control problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-09

AUTHORS

A. Miele, T. Wang

ABSTRACT

In this paper, sequential gradient-restoration algorithms for optimal control problems are considered, and attention is focused on the restoration phase. It is shown that the Lagrange multipliers associated with the restoration phase not only solve the auxiliary minimization problem of the restoration phase, but are also endowed with a supplementary optimality property: they minimize a special functional, quadratic in the multipliers, subject to the multiplier differential equations and boundary conditions, for given state, control, and parameter. More... »

PAGES

169-184

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00934442

DOI

http://dx.doi.org/10.1007/bf00934442

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046232250


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rice University, Houston, Texas", 
          "id": "http://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Rice University, Houston, Texas"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miele", 
        "givenName": "A.", 
        "id": "sg:person.015552732657.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Rice University, Houston, Texas", 
          "id": "http://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Department of Mechanical Engineering, Rice University, Houston, Texas"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "T.", 
        "id": "sg:person.014414570607.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00935541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049352093", 
          "https://doi.org/10.1007/bf00935541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00934041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044480891", 
          "https://doi.org/10.1007/bf00934041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00933463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007322541", 
          "https://doi.org/10.1007/bf00933463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00927913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010952160", 
          "https://doi.org/10.1007/bf00927913"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983-09", 
    "datePublishedReg": "1983-09-01", 
    "description": "In this paper, sequential gradient-restoration algorithms for optimal control problems are considered, and attention is focused on the restoration phase. It is shown that the Lagrange multipliers associated with the restoration phase not only solve the auxiliary minimization problem of the restoration phase, but are also endowed with a supplementary optimality property: they minimize a special functional, quadratic in the multipliers, subject to the multiplier differential equations and boundary conditions, for given state, control, and parameter.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00934442", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044187", 
        "issn": [
          "0022-3239", 
          "1573-2878"
        ], 
        "name": "Journal of Optimization Theory and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "keywords": [
      "optimal control problem", 
      "sequential gradient-restoration algorithm", 
      "gradient-restoration algorithm", 
      "control problem", 
      "optimality properties", 
      "auxiliary minimization problem", 
      "multiplier differential equations", 
      "differential equations", 
      "Lagrange multipliers", 
      "minimization problem", 
      "restoration phase", 
      "boundary conditions", 
      "multipliers", 
      "problem", 
      "algorithm", 
      "equations", 
      "properties", 
      "parameters", 
      "phase", 
      "state", 
      "conditions", 
      "control", 
      "attention", 
      "paper"
    ], 
    "name": "Supplementary optimality properties of the restoration phase of sequential gradient-restoration algorithms for optimal control problems", 
    "pagination": "169-184", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046232250"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00934442"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00934442", 
      "https://app.dimensions.ai/details/publication/pub.1046232250"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_167.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00934442"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00934442'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00934442'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00934442'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00934442'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      21 PREDICATES      53 URIs      41 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00934442 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Ncaa6b578226e4de491603baf3d1b3108
4 schema:citation sg:pub.10.1007/bf00927913
5 sg:pub.10.1007/bf00933463
6 sg:pub.10.1007/bf00934041
7 sg:pub.10.1007/bf00935541
8 schema:datePublished 1983-09
9 schema:datePublishedReg 1983-09-01
10 schema:description In this paper, sequential gradient-restoration algorithms for optimal control problems are considered, and attention is focused on the restoration phase. It is shown that the Lagrange multipliers associated with the restoration phase not only solve the auxiliary minimization problem of the restoration phase, but are also endowed with a supplementary optimality property: they minimize a special functional, quadratic in the multipliers, subject to the multiplier differential equations and boundary conditions, for given state, control, and parameter.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N21c0a85b93f441d3aa011d1646c71c8a
14 N28bb4ebc47e8407baa24770d79d4ec5a
15 sg:journal.1044187
16 schema:keywords Lagrange multipliers
17 algorithm
18 attention
19 auxiliary minimization problem
20 boundary conditions
21 conditions
22 control
23 control problem
24 differential equations
25 equations
26 gradient-restoration algorithm
27 minimization problem
28 multiplier differential equations
29 multipliers
30 optimal control problem
31 optimality properties
32 paper
33 parameters
34 phase
35 problem
36 properties
37 restoration phase
38 sequential gradient-restoration algorithm
39 state
40 schema:name Supplementary optimality properties of the restoration phase of sequential gradient-restoration algorithms for optimal control problems
41 schema:pagination 169-184
42 schema:productId N80b8f10a12684c159b6c69e24a2be7c9
43 Nd5a9b9a8a98a48589f7acae8faedcc8c
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046232250
45 https://doi.org/10.1007/bf00934442
46 schema:sdDatePublished 2022-11-24T20:45
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nb7cfa361766a41fca84f9c68e74e4b57
49 schema:url https://doi.org/10.1007/bf00934442
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N21c0a85b93f441d3aa011d1646c71c8a schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 N28bb4ebc47e8407baa24770d79d4ec5a schema:volumeNumber 41
56 rdf:type schema:PublicationVolume
57 N32f3b93711cb44c7a1d9bb95962ae8c0 rdf:first sg:person.014414570607.44
58 rdf:rest rdf:nil
59 N80b8f10a12684c159b6c69e24a2be7c9 schema:name doi
60 schema:value 10.1007/bf00934442
61 rdf:type schema:PropertyValue
62 Nb7cfa361766a41fca84f9c68e74e4b57 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Ncaa6b578226e4de491603baf3d1b3108 rdf:first sg:person.015552732657.49
65 rdf:rest N32f3b93711cb44c7a1d9bb95962ae8c0
66 Nd5a9b9a8a98a48589f7acae8faedcc8c schema:name dimensions_id
67 schema:value pub.1046232250
68 rdf:type schema:PropertyValue
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
73 schema:name Applied Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1044187 schema:issn 0022-3239
76 1573-2878
77 schema:name Journal of Optimization Theory and Applications
78 schema:publisher Springer Nature
79 rdf:type schema:Periodical
80 sg:person.014414570607.44 schema:affiliation grid-institutes:grid.21940.3e
81 schema:familyName Wang
82 schema:givenName T.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44
84 rdf:type schema:Person
85 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
86 schema:familyName Miele
87 schema:givenName A.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
89 rdf:type schema:Person
90 sg:pub.10.1007/bf00927913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010952160
91 https://doi.org/10.1007/bf00927913
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf00933463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007322541
94 https://doi.org/10.1007/bf00933463
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf00934041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044480891
97 https://doi.org/10.1007/bf00934041
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf00935541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049352093
100 https://doi.org/10.1007/bf00935541
101 rdf:type schema:CreativeWork
102 grid-institutes:grid.21940.3e schema:alternateName Department of Mechanical Engineering, Rice University, Houston, Texas
103 Rice University, Houston, Texas
104 schema:name Department of Mechanical Engineering, Rice University, Houston, Texas
105 Rice University, Houston, Texas
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...