The main problem of lunar theory solved by the method of Brown View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-10

AUTHORS

Dieter S. Schmidt

ABSTRACT

Brown's method for solving the main problem of lunar theory has been adapted for the computation by machine with the help of an algebraic processor. Brown's results are first recovered and refined. The solution is then expanded to include most terms of order nine. The terms in the series for the longitude and latitude are listed with an accuracy of 0.000 01“ and of 0.000 001” for the parallax. More... »

PAGES

135-164

Journal

TITLE

The Moon and the Planets

ISSUE

2

VOLUME

23

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00899815

DOI

http://dx.doi.org/10.1007/bf00899815

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008895240


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cincinnati", 
          "id": "https://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Dieter S.", 
        "id": "sg:person.015464666561.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464666561.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1086/110409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058448995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/112493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058451072"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1980-10", 
    "datePublishedReg": "1980-10-01", 
    "description": "Brown's method for solving the main problem of lunar theory has been adapted for the computation by machine with the help of an algebraic processor. Brown's results are first recovered and refined. The solution is then expanded to include most terms of order nine. The terms in the series for the longitude and latitude are listed with an accuracy of 0.000 01\u201c and of 0.000 001\u201d for the parallax.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00899815", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1317597", 
        "issn": [
          "0165-0807"
        ], 
        "name": "The Moon and the Planets", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "The main problem of lunar theory solved by the method of Brown", 
    "pagination": "135-164", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2a61091c057aa6ecd8edf80fd87d26734a933ed5449213ca41c25a424b1def64"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00899815"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008895240"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00899815", 
      "https://app.dimensions.ai/details/publication/pub.1008895240"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00899815"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00899815'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00899815'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00899815'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00899815'


 

This table displays all metadata directly associated to this object as RDF triples.

66 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00899815 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3f9d469bb08b4f9b8097b1caa785ca57
4 schema:citation https://doi.org/10.1086/110409
5 https://doi.org/10.1086/112493
6 schema:datePublished 1980-10
7 schema:datePublishedReg 1980-10-01
8 schema:description Brown's method for solving the main problem of lunar theory has been adapted for the computation by machine with the help of an algebraic processor. Brown's results are first recovered and refined. The solution is then expanded to include most terms of order nine. The terms in the series for the longitude and latitude are listed with an accuracy of 0.000 01“ and of 0.000 001” for the parallax.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Naab04702d526479b91a2eab317af04e1
13 Nea06ad8d67c949a5a5add1621a09aff4
14 sg:journal.1317597
15 schema:name The main problem of lunar theory solved by the method of Brown
16 schema:pagination 135-164
17 schema:productId N59193ee9b4d74175b3fc1b1c2bc827e7
18 Nb51cab0ffdb849c7916191f6620009ea
19 Nfc849eadee7447cbb029eb0f3443b458
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008895240
21 https://doi.org/10.1007/bf00899815
22 schema:sdDatePublished 2019-04-10T16:38
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Nbbeb1c116fe74ab0b4b476fca2c22d80
25 schema:url http://link.springer.com/10.1007/BF00899815
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N3f9d469bb08b4f9b8097b1caa785ca57 rdf:first sg:person.015464666561.44
30 rdf:rest rdf:nil
31 N59193ee9b4d74175b3fc1b1c2bc827e7 schema:name doi
32 schema:value 10.1007/bf00899815
33 rdf:type schema:PropertyValue
34 Naab04702d526479b91a2eab317af04e1 schema:issueNumber 2
35 rdf:type schema:PublicationIssue
36 Nb51cab0ffdb849c7916191f6620009ea schema:name dimensions_id
37 schema:value pub.1008895240
38 rdf:type schema:PropertyValue
39 Nbbeb1c116fe74ab0b4b476fca2c22d80 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Nea06ad8d67c949a5a5add1621a09aff4 schema:volumeNumber 23
42 rdf:type schema:PublicationVolume
43 Nfc849eadee7447cbb029eb0f3443b458 schema:name readcube_id
44 schema:value 2a61091c057aa6ecd8edf80fd87d26734a933ed5449213ca41c25a424b1def64
45 rdf:type schema:PropertyValue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1317597 schema:issn 0165-0807
53 schema:name The Moon and the Planets
54 rdf:type schema:Periodical
55 sg:person.015464666561.44 schema:affiliation https://www.grid.ac/institutes/grid.24827.3b
56 schema:familyName Schmidt
57 schema:givenName Dieter S.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464666561.44
59 rdf:type schema:Person
60 https://doi.org/10.1086/110409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448995
61 rdf:type schema:CreativeWork
62 https://doi.org/10.1086/112493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058451072
63 rdf:type schema:CreativeWork
64 https://www.grid.ac/institutes/grid.24827.3b schema:alternateName University of Cincinnati
65 schema:name Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, USA
66 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...