Relationships among eigenshape analysis, Fourier analysis, and analysis of coordinates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-11

AUTHORS

F. James Rohlf

ABSTRACT

Eigenshape analysis (a singular value decomposition of a matrix of the tangent angle function φ*(t)) has recently been proposed as an alternative to Fourier analysis for description of outline shapes of organisms. Whenall eigenvectors andall harmonics are retained both approaches represent orthogonal rotations of the same points. Thus distances between pairs of shapes (and any multivariate analyses based on distances) must be the same for both analyses. When true shapes are known to be smooth, dropping higher-order Fourier harmonics results in a desirable smoothing of the digitized outline and a large reduction in computational cost. An alternative method of eigenshape analysis is presented and related to elliptical Fourier analysis and analysis of raw coordinates. More... »

PAGES

845-854

Journal

TITLE

Mathematical Geosciences

ISSUE

8

VOLUME

18

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00899747

DOI

http://dx.doi.org/10.1007/bf00899747

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029192736


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stony Brook University", 
          "id": "https://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Ecology and Evolution, State University of New York, 11794, Stony Brook, N.Y."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rohlf", 
        "givenName": "F. James", 
        "id": "sg:person.01231635514.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231635514.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00897498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000918635", 
          "https://doi.org/10.1007/bf00897498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0146-664x(82)90034-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003975878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0094837300007879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023038709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4039/ent105733-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045360597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02163027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049192175", 
          "https://doi.org/10.1007/bf02163027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02163027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049192175", 
          "https://doi.org/10.1007/bf02163027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01033230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052341646", 
          "https://doi.org/10.1007/bf01033230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01030856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052470971", 
          "https://doi.org/10.1007/bf01030856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.1972.5008949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061531397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2412758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069921137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2413032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069921372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2413076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069921405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2413345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069921612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2413416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069921668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2530448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069975956"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-11", 
    "datePublishedReg": "1986-11-01", 
    "description": "Eigenshape analysis (a singular value decomposition of a matrix of the tangent angle function \u03c6*(t)) has recently been proposed as an alternative to Fourier analysis for description of outline shapes of organisms. Whenall eigenvectors andall harmonics are retained both approaches represent orthogonal rotations of the same points. Thus distances between pairs of shapes (and any multivariate analyses based on distances) must be the same for both analyses. When true shapes are known to be smooth, dropping higher-order Fourier harmonics results in a desirable smoothing of the digitized outline and a large reduction in computational cost. An alternative method of eigenshape analysis is presented and related to elliptical Fourier analysis and analysis of raw coordinates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00899747", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039818", 
        "issn": [
          "1874-8961", 
          "1874-8953"
        ], 
        "name": "Mathematical Geosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Relationships among eigenshape analysis, Fourier analysis, and analysis of coordinates", 
    "pagination": "845-854", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8b1229ac6fe9a092be5d40c6a6c36c90ae3350c3c5a8dd96bcdbaaf784f37bb7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00899747"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029192736"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00899747", 
      "https://app.dimensions.ai/details/publication/pub.1029192736"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00899747"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00899747'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00899747'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00899747'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00899747'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00899747 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Na8ffbde669b0437e915fe82312ca031d
4 schema:citation sg:pub.10.1007/bf00897498
5 sg:pub.10.1007/bf01030856
6 sg:pub.10.1007/bf01033230
7 sg:pub.10.1007/bf02163027
8 https://doi.org/10.1016/0146-664x(82)90034-x
9 https://doi.org/10.1017/s0094837300007879
10 https://doi.org/10.1109/tc.1972.5008949
11 https://doi.org/10.2307/2412758
12 https://doi.org/10.2307/2413032
13 https://doi.org/10.2307/2413076
14 https://doi.org/10.2307/2413345
15 https://doi.org/10.2307/2413416
16 https://doi.org/10.2307/2530448
17 https://doi.org/10.4039/ent105733-5
18 schema:datePublished 1986-11
19 schema:datePublishedReg 1986-11-01
20 schema:description Eigenshape analysis (a singular value decomposition of a matrix of the tangent angle function φ*(t)) has recently been proposed as an alternative to Fourier analysis for description of outline shapes of organisms. Whenall eigenvectors andall harmonics are retained both approaches represent orthogonal rotations of the same points. Thus distances between pairs of shapes (and any multivariate analyses based on distances) must be the same for both analyses. When true shapes are known to be smooth, dropping higher-order Fourier harmonics results in a desirable smoothing of the digitized outline and a large reduction in computational cost. An alternative method of eigenshape analysis is presented and related to elliptical Fourier analysis and analysis of raw coordinates.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N006cee843cc8483d9433fe3044fee366
25 Nbe1af4fc19624862855d180b080d050b
26 sg:journal.1039818
27 schema:name Relationships among eigenshape analysis, Fourier analysis, and analysis of coordinates
28 schema:pagination 845-854
29 schema:productId N11a68af523914c23aed676138ce90ada
30 N1a7814a8edf24532985ce75baa25e7fd
31 N721fe9aad6a34fa5a214df3645ec2093
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029192736
33 https://doi.org/10.1007/bf00899747
34 schema:sdDatePublished 2019-04-11T00:12
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N9b78a8687076426faf385fd9092f060e
37 schema:url http://link.springer.com/10.1007/BF00899747
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N006cee843cc8483d9433fe3044fee366 schema:issueNumber 8
42 rdf:type schema:PublicationIssue
43 N11a68af523914c23aed676138ce90ada schema:name dimensions_id
44 schema:value pub.1029192736
45 rdf:type schema:PropertyValue
46 N1a7814a8edf24532985ce75baa25e7fd schema:name readcube_id
47 schema:value 8b1229ac6fe9a092be5d40c6a6c36c90ae3350c3c5a8dd96bcdbaaf784f37bb7
48 rdf:type schema:PropertyValue
49 N721fe9aad6a34fa5a214df3645ec2093 schema:name doi
50 schema:value 10.1007/bf00899747
51 rdf:type schema:PropertyValue
52 N9b78a8687076426faf385fd9092f060e schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Na8ffbde669b0437e915fe82312ca031d rdf:first sg:person.01231635514.01
55 rdf:rest rdf:nil
56 Nbe1af4fc19624862855d180b080d050b schema:volumeNumber 18
57 rdf:type schema:PublicationVolume
58 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
59 schema:name Biological Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
62 schema:name Genetics
63 rdf:type schema:DefinedTerm
64 sg:journal.1039818 schema:issn 1874-8953
65 1874-8961
66 schema:name Mathematical Geosciences
67 rdf:type schema:Periodical
68 sg:person.01231635514.01 schema:affiliation https://www.grid.ac/institutes/grid.36425.36
69 schema:familyName Rohlf
70 schema:givenName F. James
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231635514.01
72 rdf:type schema:Person
73 sg:pub.10.1007/bf00897498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000918635
74 https://doi.org/10.1007/bf00897498
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01030856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052470971
77 https://doi.org/10.1007/bf01030856
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01033230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052341646
80 https://doi.org/10.1007/bf01033230
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf02163027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049192175
83 https://doi.org/10.1007/bf02163027
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0146-664x(82)90034-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003975878
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1017/s0094837300007879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023038709
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/tc.1972.5008949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061531397
90 rdf:type schema:CreativeWork
91 https://doi.org/10.2307/2412758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069921137
92 rdf:type schema:CreativeWork
93 https://doi.org/10.2307/2413032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069921372
94 rdf:type schema:CreativeWork
95 https://doi.org/10.2307/2413076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069921405
96 rdf:type schema:CreativeWork
97 https://doi.org/10.2307/2413345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069921612
98 rdf:type schema:CreativeWork
99 https://doi.org/10.2307/2413416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069921668
100 rdf:type schema:CreativeWork
101 https://doi.org/10.2307/2530448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975956
102 rdf:type schema:CreativeWork
103 https://doi.org/10.4039/ent105733-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045360597
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.36425.36 schema:alternateName Stony Brook University
106 schema:name Department of Ecology and Evolution, State University of New York, 11794, Stony Brook, N.Y.
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...