A geostatistical basis for spatial weighting in multivariate classification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-01

AUTHORS

M. A. Oliver, R. Webster

ABSTRACT

Earth scientists and land managers often wish to group sampling sites that are both similar with respect to their properties and near to one another on the ground. This paper outlines the geostatistical rationale for such spatial grouping and describes a multivariate procedure to implement it. Sample variograms are calculated from the original data or their leading principal components and then the parameters of the underlying functions are estimated. A dissimilarity matrix is computed for all sampling sites, preferably using Gower's general similarity coefficient. Dissimilarities are then modified using the variogram to incorporate the form and extent of spatial variation. A nonhierarchical classification of sampling sites is performed on the leading latent vectors of the modified dissimilarity matrix by dynamic clustering to an optimum. The technique is illustrated with results of its application to soil survey data from two small areas in Britain and from a transect. In the case of the latter results of spatially weighted classifications are compared with those of strict segmentation. An appendix lists a Genstat program for a spatially constrained classification using a spherical variogram as an example. More... »

PAGES

15-35

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00897238

DOI

http://dx.doi.org/10.1007/bf00897238

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008188289


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Geography, The University, P.O. Box 363, B15 2TT, Birmingham, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliver", 
        "givenName": "M. A.", 
        "id": "sg:person.010076772773.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010076772773.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rothamsted Research", 
          "id": "https://www.grid.ac/institutes/grid.418374.d", 
          "name": [
            "Rothamsted Experimental Station, AL5 2JQ, Harpenden, Hertfordshire, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Webster", 
        "givenName": "R.", 
        "id": "sg:person.01175533525.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175533525.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02293706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001739880", 
          "https://doi.org/10.1007/bf02293706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(83)90024-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005942739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(83)90024-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005942739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02114085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012409705", 
          "https://doi.org/10.1007/bf02114085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02114085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012409705", 
          "https://doi.org/10.1007/bf02114085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.1987.tb02145.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018956130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.1987.tb02146.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022690023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511897375.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024286544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.1972.tb01655.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026778953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.1978.tb00789.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028953043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.1986.tb00392.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034300981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.2740380203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045985715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.1975.tb01942.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046544397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7061(81)90076-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053565393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7061(81)90076-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053565393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09595236800185071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058350733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2528592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2528823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/622300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070662391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982025"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-01", 
    "datePublishedReg": "1989-01-01", 
    "description": "Earth scientists and land managers often wish to group sampling sites that are both similar with respect to their properties and near to one another on the ground. This paper outlines the geostatistical rationale for such spatial grouping and describes a multivariate procedure to implement it. Sample variograms are calculated from the original data or their leading principal components and then the parameters of the underlying functions are estimated. A dissimilarity matrix is computed for all sampling sites, preferably using Gower's general similarity coefficient. Dissimilarities are then modified using the variogram to incorporate the form and extent of spatial variation. A nonhierarchical classification of sampling sites is performed on the leading latent vectors of the modified dissimilarity matrix by dynamic clustering to an optimum. The technique is illustrated with results of its application to soil survey data from two small areas in Britain and from a transect. In the case of the latter results of spatially weighted classifications are compared with those of strict segmentation. An appendix lists a Genstat program for a spatially constrained classification using a spherical variogram as an example.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00897238", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039818", 
        "issn": [
          "1874-8961", 
          "1874-8953"
        ], 
        "name": "Mathematical Geosciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "A geostatistical basis for spatial weighting in multivariate classification", 
    "pagination": "15-35", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2702cee055aeb8d32a55a755e4dda823952cecacb0e3bfd03451893be9b3788c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00897238"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008188289"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00897238", 
      "https://app.dimensions.ai/details/publication/pub.1008188289"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00897238"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00897238'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00897238'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00897238'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00897238'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00897238 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author Ne0f8bcc094f8491191514cd3631599a1
4 schema:citation sg:pub.10.1007/bf02114085
5 sg:pub.10.1007/bf02293706
6 https://doi.org/10.1002/jsfa.2740380203
7 https://doi.org/10.1016/0016-7061(81)90076-8
8 https://doi.org/10.1016/0031-3203(83)90024-9
9 https://doi.org/10.1017/cbo9780511897375.007
10 https://doi.org/10.1080/09595236800185071
11 https://doi.org/10.1111/j.1365-2389.1972.tb01655.x
12 https://doi.org/10.1111/j.1365-2389.1975.tb01942.x
13 https://doi.org/10.1111/j.1365-2389.1978.tb00789.x
14 https://doi.org/10.1111/j.1365-2389.1986.tb00392.x
15 https://doi.org/10.1111/j.1365-2389.1987.tb02145.x
16 https://doi.org/10.1111/j.1365-2389.1987.tb02146.x
17 https://doi.org/10.2307/2347039
18 https://doi.org/10.2307/2528592
19 https://doi.org/10.2307/2528823
20 https://doi.org/10.2307/622300
21 schema:datePublished 1989-01
22 schema:datePublishedReg 1989-01-01
23 schema:description Earth scientists and land managers often wish to group sampling sites that are both similar with respect to their properties and near to one another on the ground. This paper outlines the geostatistical rationale for such spatial grouping and describes a multivariate procedure to implement it. Sample variograms are calculated from the original data or their leading principal components and then the parameters of the underlying functions are estimated. A dissimilarity matrix is computed for all sampling sites, preferably using Gower's general similarity coefficient. Dissimilarities are then modified using the variogram to incorporate the form and extent of spatial variation. A nonhierarchical classification of sampling sites is performed on the leading latent vectors of the modified dissimilarity matrix by dynamic clustering to an optimum. The technique is illustrated with results of its application to soil survey data from two small areas in Britain and from a transect. In the case of the latter results of spatially weighted classifications are compared with those of strict segmentation. An appendix lists a Genstat program for a spatially constrained classification using a spherical variogram as an example.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N13ddd07b43fc47b489555ac45ffcc5c9
28 Nf0c0e97ff1a1422586383698b81548ff
29 sg:journal.1039818
30 schema:name A geostatistical basis for spatial weighting in multivariate classification
31 schema:pagination 15-35
32 schema:productId N3bcdbb1f587c4a0cb2b71371658f4c4e
33 Nafc4c4fc833d4bebafa3acd410b645b7
34 Nf5205ef55b9d4fd2b59150ae0c421c36
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008188289
36 https://doi.org/10.1007/bf00897238
37 schema:sdDatePublished 2019-04-11T01:03
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nc335f7e58a124b11ab18098aeea1fd83
40 schema:url http://link.springer.com/10.1007/BF00897238
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N13ddd07b43fc47b489555ac45ffcc5c9 schema:issueNumber 1
45 rdf:type schema:PublicationIssue
46 N3bcdbb1f587c4a0cb2b71371658f4c4e schema:name dimensions_id
47 schema:value pub.1008188289
48 rdf:type schema:PropertyValue
49 N44df69e8a9d84d02b4e16f9300484cbd rdf:first sg:person.01175533525.40
50 rdf:rest rdf:nil
51 N786186f5c98b481795f593802caf5010 schema:name Department of Geography, The University, P.O. Box 363, B15 2TT, Birmingham, England
52 rdf:type schema:Organization
53 Nafc4c4fc833d4bebafa3acd410b645b7 schema:name readcube_id
54 schema:value 2702cee055aeb8d32a55a755e4dda823952cecacb0e3bfd03451893be9b3788c
55 rdf:type schema:PropertyValue
56 Nc335f7e58a124b11ab18098aeea1fd83 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Ne0f8bcc094f8491191514cd3631599a1 rdf:first sg:person.010076772773.20
59 rdf:rest N44df69e8a9d84d02b4e16f9300484cbd
60 Nf0c0e97ff1a1422586383698b81548ff schema:volumeNumber 21
61 rdf:type schema:PublicationVolume
62 Nf5205ef55b9d4fd2b59150ae0c421c36 schema:name doi
63 schema:value 10.1007/bf00897238
64 rdf:type schema:PropertyValue
65 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
66 schema:name Environmental Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
69 schema:name Environmental Science and Management
70 rdf:type schema:DefinedTerm
71 sg:journal.1039818 schema:issn 1874-8953
72 1874-8961
73 schema:name Mathematical Geosciences
74 rdf:type schema:Periodical
75 sg:person.010076772773.20 schema:affiliation N786186f5c98b481795f593802caf5010
76 schema:familyName Oliver
77 schema:givenName M. A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010076772773.20
79 rdf:type schema:Person
80 sg:person.01175533525.40 schema:affiliation https://www.grid.ac/institutes/grid.418374.d
81 schema:familyName Webster
82 schema:givenName R.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175533525.40
84 rdf:type schema:Person
85 sg:pub.10.1007/bf02114085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012409705
86 https://doi.org/10.1007/bf02114085
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf02293706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001739880
89 https://doi.org/10.1007/bf02293706
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/jsfa.2740380203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045985715
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0016-7061(81)90076-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053565393
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0031-3203(83)90024-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005942739
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1017/cbo9780511897375.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024286544
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1080/09595236800185071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058350733
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1111/j.1365-2389.1972.tb01655.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026778953
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1111/j.1365-2389.1975.tb01942.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046544397
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1111/j.1365-2389.1978.tb00789.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028953043
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1111/j.1365-2389.1986.tb00392.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034300981
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1111/j.1365-2389.1987.tb02145.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018956130
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1111/j.1365-2389.1987.tb02146.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690023
112 rdf:type schema:CreativeWork
113 https://doi.org/10.2307/2347039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982025
114 rdf:type schema:CreativeWork
115 https://doi.org/10.2307/2528592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974358
116 rdf:type schema:CreativeWork
117 https://doi.org/10.2307/2528823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974562
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2307/622300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070662391
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.418374.d schema:alternateName Rothamsted Research
122 schema:name Rothamsted Experimental Station, AL5 2JQ, Harpenden, Hertfordshire, England
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...