Ontology type: schema:ScholarlyArticle
1996-09
AUTHORST. N. Gowd, S. V. Srirama Rao, K. B. Chary
ABSTRACTIntraplate stresses and intraplate seismicity in the Indian subcontinent are strongly affected by the continued convergence between India and Eurasia. The mean orientation of the maximum horizontal compression in the Indian subcontinent is subparallel to the direction of the ridge push at the plate boundary as well as to the direction of compression expected to arise from the net resistive forces at the Himalayan collision zone, indicating that the intraplate stresses in the subcontinent, including the shield area, are caused by plate tectonic processes. Spatial distribution of historic and instrumentally recorded earthquakes indicate that the seismic activity is mostly confined to linear belts while the remaining large area of the shield is stable. The available conventional heat flow data and other indicators of heat flow suggest hotter geotherms in the linear belts, leading to amplification of stresses in the upper brittle crust. Many of the faults in these linear belts, which happen to be 200–80 m.y. old, are being reactivated either in a strike-slip or thrust-faulting mode. The reactivation mechanisms have been analyzed by taking into consideration the amplification of stresses, pore pressures, geological history of the faults and their orientation with respect to the contemporaneous stress field. The seismicity of the Indian shield is explained in terms of these reactivation mechanisms. More... »
PAGES503-531
http://scigraph.springernature.com/pub.10.1007/bf00874731
DOIhttp://dx.doi.org/10.1007/bf00874731
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1052125393
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Geology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "National Geophysical Research Institute, 500 007, Hyderabad, (A.P.), India",
"id": "http://www.grid.ac/institutes/grid.419382.5",
"name": [
"National Geophysical Research Institute, 500 007, Hyderabad, (A.P.), India"
],
"type": "Organization"
},
"familyName": "Gowd",
"givenName": "T. N.",
"id": "sg:person.014053160670.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053160670.91"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Geophysical Research Institute, 500 007, Hyderabad, (A.P.), India",
"id": "http://www.grid.ac/institutes/grid.419382.5",
"name": [
"National Geophysical Research Institute, 500 007, Hyderabad, (A.P.), India"
],
"type": "Organization"
},
"familyName": "Srirama Rao",
"givenName": "S. V.",
"id": "sg:person.016645520567.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645520567.67"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Geophysical Research Institute, 500 007, Hyderabad, (A.P.), India",
"id": "http://www.grid.ac/institutes/grid.419382.5",
"name": [
"National Geophysical Research Institute, 500 007, Hyderabad, (A.P.), India"
],
"type": "Organization"
},
"familyName": "Chary",
"givenName": "K. B.",
"id": "sg:person.016551255617.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016551255617.24"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00879749",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021017536",
"https://doi.org/10.1007/bf00879749"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-6525-8_20",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013999799",
"https://doi.org/10.1007/978-3-0348-6525-8_20"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/365633a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004433197",
"https://doi.org/10.1038/365633a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02839258",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086152601",
"https://doi.org/10.1007/bf02839258"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/311615a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033531421",
"https://doi.org/10.1038/311615a0"
],
"type": "CreativeWork"
}
],
"datePublished": "1996-09",
"datePublishedReg": "1996-09-01",
"description": "Intraplate stresses and intraplate seismicity in the Indian subcontinent are strongly affected by the continued convergence between India and Eurasia. The mean orientation of the maximum horizontal compression in the Indian subcontinent is subparallel to the direction of the ridge push at the plate boundary as well as to the direction of compression expected to arise from the net resistive forces at the Himalayan collision zone, indicating that the intraplate stresses in the subcontinent, including the shield area, are caused by plate tectonic processes. Spatial distribution of historic and instrumentally recorded earthquakes indicate that the seismic activity is mostly confined to linear belts while the remaining large area of the shield is stable. The available conventional heat flow data and other indicators of heat flow suggest hotter geotherms in the linear belts, leading to amplification of stresses in the upper brittle crust. Many of the faults in these linear belts, which happen to be 200\u201380 m.y. old, are being reactivated either in a strike-slip or thrust-faulting mode. The reactivation mechanisms have been analyzed by taking into consideration the amplification of stresses, pore pressures, geological history of the faults and their orientation with respect to the contemporaneous stress field. The seismicity of the Indian shield is explained in terms of these reactivation mechanisms.",
"genre": "article",
"id": "sg:pub.10.1007/bf00874731",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136817",
"issn": [
"0033-4553",
"1420-9136"
],
"name": "Pure and Applied Geophysics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "146"
}
],
"keywords": [
"amplification of stresses",
"intraplate stresses",
"linear belt",
"Indian shield",
"plate tectonic processes",
"Himalayan collision zone",
"upper brittle crust",
"heat flow data",
"maximum horizontal compression",
"Indian subcontinent",
"stress field",
"reactivation mechanism",
"direction of compression",
"tectonic processes",
"hot geotherms",
"plate boundary",
"collision zone",
"ridge push",
"brittle crust",
"shield areas",
"seismic activity",
"geological history",
"horizontal compression",
"recorded earthquakes",
"heat flow",
"seismicity",
"belt",
"pore pressure",
"spatial distribution",
"flow data",
"shield",
"large areas",
"Eurasia",
"mean orientation",
"subcontinent",
"faults",
"geotherm",
"crust",
"earthquakes",
"resistive force",
"India",
"zone",
"area",
"boundaries",
"collisions",
"flow",
"direction",
"distribution",
"field",
"history",
"compression",
"indicators",
"convergence",
"data",
"stress",
"orientation",
"process",
"amplification",
"pressure",
"push",
"respect",
"mechanism",
"mode",
"activity",
"consideration",
"terms",
"effect",
"force"
],
"name": "Stress field and seismicity in the Indian shield: Effects of the collision between India and Eurasia",
"pagination": "503-531",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1052125393"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00874731"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00874731",
"https://app.dimensions.ai/details/publication/pub.1052125393"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:53",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_274.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00874731"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00874731'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00874731'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00874731'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00874731'
This table displays all metadata directly associated to this object as RDF triples.
159 TRIPLES
21 PREDICATES
98 URIs
85 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00874731 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0403 |
3 | ″ | schema:author | N823bdfe203764d428b7e4024974e121c |
4 | ″ | schema:citation | sg:pub.10.1007/978-3-0348-6525-8_20 |
5 | ″ | ″ | sg:pub.10.1007/bf00879749 |
6 | ″ | ″ | sg:pub.10.1007/bf02839258 |
7 | ″ | ″ | sg:pub.10.1038/311615a0 |
8 | ″ | ″ | sg:pub.10.1038/365633a0 |
9 | ″ | schema:datePublished | 1996-09 |
10 | ″ | schema:datePublishedReg | 1996-09-01 |
11 | ″ | schema:description | Intraplate stresses and intraplate seismicity in the Indian subcontinent are strongly affected by the continued convergence between India and Eurasia. The mean orientation of the maximum horizontal compression in the Indian subcontinent is subparallel to the direction of the ridge push at the plate boundary as well as to the direction of compression expected to arise from the net resistive forces at the Himalayan collision zone, indicating that the intraplate stresses in the subcontinent, including the shield area, are caused by plate tectonic processes. Spatial distribution of historic and instrumentally recorded earthquakes indicate that the seismic activity is mostly confined to linear belts while the remaining large area of the shield is stable. The available conventional heat flow data and other indicators of heat flow suggest hotter geotherms in the linear belts, leading to amplification of stresses in the upper brittle crust. Many of the faults in these linear belts, which happen to be 200–80 m.y. old, are being reactivated either in a strike-slip or thrust-faulting mode. The reactivation mechanisms have been analyzed by taking into consideration the amplification of stresses, pore pressures, geological history of the faults and their orientation with respect to the contemporaneous stress field. The seismicity of the Indian shield is explained in terms of these reactivation mechanisms. |
12 | ″ | schema:genre | article |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N3e98caee297e43309546f21a4da64c06 |
15 | ″ | ″ | N531a202abc7d457cbcb11b3b531eec57 |
16 | ″ | ″ | sg:journal.1136817 |
17 | ″ | schema:keywords | Eurasia |
18 | ″ | ″ | Himalayan collision zone |
19 | ″ | ″ | India |
20 | ″ | ″ | Indian shield |
21 | ″ | ″ | Indian subcontinent |
22 | ″ | ″ | activity |
23 | ″ | ″ | amplification |
24 | ″ | ″ | amplification of stresses |
25 | ″ | ″ | area |
26 | ″ | ″ | belt |
27 | ″ | ″ | boundaries |
28 | ″ | ″ | brittle crust |
29 | ″ | ″ | collision zone |
30 | ″ | ″ | collisions |
31 | ″ | ″ | compression |
32 | ″ | ″ | consideration |
33 | ″ | ″ | convergence |
34 | ″ | ″ | crust |
35 | ″ | ″ | data |
36 | ″ | ″ | direction |
37 | ″ | ″ | direction of compression |
38 | ″ | ″ | distribution |
39 | ″ | ″ | earthquakes |
40 | ″ | ″ | effect |
41 | ″ | ″ | faults |
42 | ″ | ″ | field |
43 | ″ | ″ | flow |
44 | ″ | ″ | flow data |
45 | ″ | ″ | force |
46 | ″ | ″ | geological history |
47 | ″ | ″ | geotherm |
48 | ″ | ″ | heat flow |
49 | ″ | ″ | heat flow data |
50 | ″ | ″ | history |
51 | ″ | ″ | horizontal compression |
52 | ″ | ″ | hot geotherms |
53 | ″ | ″ | indicators |
54 | ″ | ″ | intraplate stresses |
55 | ″ | ″ | large areas |
56 | ″ | ″ | linear belt |
57 | ″ | ″ | maximum horizontal compression |
58 | ″ | ″ | mean orientation |
59 | ″ | ″ | mechanism |
60 | ″ | ″ | mode |
61 | ″ | ″ | orientation |
62 | ″ | ″ | plate boundary |
63 | ″ | ″ | plate tectonic processes |
64 | ″ | ″ | pore pressure |
65 | ″ | ″ | pressure |
66 | ″ | ″ | process |
67 | ″ | ″ | push |
68 | ″ | ″ | reactivation mechanism |
69 | ″ | ″ | recorded earthquakes |
70 | ″ | ″ | resistive force |
71 | ″ | ″ | respect |
72 | ″ | ″ | ridge push |
73 | ″ | ″ | seismic activity |
74 | ″ | ″ | seismicity |
75 | ″ | ″ | shield |
76 | ″ | ″ | shield areas |
77 | ″ | ″ | spatial distribution |
78 | ″ | ″ | stress |
79 | ″ | ″ | stress field |
80 | ″ | ″ | subcontinent |
81 | ″ | ″ | tectonic processes |
82 | ″ | ″ | terms |
83 | ″ | ″ | upper brittle crust |
84 | ″ | ″ | zone |
85 | ″ | schema:name | Stress field and seismicity in the Indian shield: Effects of the collision between India and Eurasia |
86 | ″ | schema:pagination | 503-531 |
87 | ″ | schema:productId | N1634978f8c58473e911413c81041ca4e |
88 | ″ | ″ | Nd5aa6732e19d4b51bf59fabafb01b386 |
89 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052125393 |
90 | ″ | ″ | https://doi.org/10.1007/bf00874731 |
91 | ″ | schema:sdDatePublished | 2022-08-04T16:53 |
92 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
93 | ″ | schema:sdPublisher | Na056a794a37c418da6872995c58af751 |
94 | ″ | schema:url | https://doi.org/10.1007/bf00874731 |
95 | ″ | sgo:license | sg:explorer/license/ |
96 | ″ | sgo:sdDataset | articles |
97 | ″ | rdf:type | schema:ScholarlyArticle |
98 | N1634978f8c58473e911413c81041ca4e | schema:name | doi |
99 | ″ | schema:value | 10.1007/bf00874731 |
100 | ″ | rdf:type | schema:PropertyValue |
101 | N3e98caee297e43309546f21a4da64c06 | schema:issueNumber | 3-4 |
102 | ″ | rdf:type | schema:PublicationIssue |
103 | N531a202abc7d457cbcb11b3b531eec57 | schema:volumeNumber | 146 |
104 | ″ | rdf:type | schema:PublicationVolume |
105 | N823bdfe203764d428b7e4024974e121c | rdf:first | sg:person.014053160670.91 |
106 | ″ | rdf:rest | Ndeba8fce2b454e2db64eff2dcd01dc9f |
107 | Na056a794a37c418da6872995c58af751 | schema:name | Springer Nature - SN SciGraph project |
108 | ″ | rdf:type | schema:Organization |
109 | Nd5aa6732e19d4b51bf59fabafb01b386 | schema:name | dimensions_id |
110 | ″ | schema:value | pub.1052125393 |
111 | ″ | rdf:type | schema:PropertyValue |
112 | Nd8b075abea1740249d31c39b7eae1cda | rdf:first | sg:person.016551255617.24 |
113 | ″ | rdf:rest | rdf:nil |
114 | Ndeba8fce2b454e2db64eff2dcd01dc9f | rdf:first | sg:person.016645520567.67 |
115 | ″ | rdf:rest | Nd8b075abea1740249d31c39b7eae1cda |
116 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Earth Sciences |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | anzsrc-for:0403 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Geology |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | sg:journal.1136817 | schema:issn | 0033-4553 |
123 | ″ | ″ | 1420-9136 |
124 | ″ | schema:name | Pure and Applied Geophysics |
125 | ″ | schema:publisher | Springer Nature |
126 | ″ | rdf:type | schema:Periodical |
127 | sg:person.014053160670.91 | schema:affiliation | grid-institutes:grid.419382.5 |
128 | ″ | schema:familyName | Gowd |
129 | ″ | schema:givenName | T. N. |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053160670.91 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.016551255617.24 | schema:affiliation | grid-institutes:grid.419382.5 |
133 | ″ | schema:familyName | Chary |
134 | ″ | schema:givenName | K. B. |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016551255617.24 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.016645520567.67 | schema:affiliation | grid-institutes:grid.419382.5 |
138 | ″ | schema:familyName | Srirama Rao |
139 | ″ | schema:givenName | S. V. |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645520567.67 |
141 | ″ | rdf:type | schema:Person |
142 | sg:pub.10.1007/978-3-0348-6525-8_20 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013999799 |
143 | ″ | ″ | https://doi.org/10.1007/978-3-0348-6525-8_20 |
144 | ″ | rdf:type | schema:CreativeWork |
145 | sg:pub.10.1007/bf00879749 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021017536 |
146 | ″ | ″ | https://doi.org/10.1007/bf00879749 |
147 | ″ | rdf:type | schema:CreativeWork |
148 | sg:pub.10.1007/bf02839258 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1086152601 |
149 | ″ | ″ | https://doi.org/10.1007/bf02839258 |
150 | ″ | rdf:type | schema:CreativeWork |
151 | sg:pub.10.1038/311615a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033531421 |
152 | ″ | ″ | https://doi.org/10.1038/311615a0 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | sg:pub.10.1038/365633a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004433197 |
155 | ″ | ″ | https://doi.org/10.1038/365633a0 |
156 | ″ | rdf:type | schema:CreativeWork |
157 | grid-institutes:grid.419382.5 | schema:alternateName | National Geophysical Research Institute, 500 007, Hyderabad, (A.P.), India |
158 | ″ | schema:name | National Geophysical Research Institute, 500 007, Hyderabad, (A.P.), India |
159 | ″ | rdf:type | schema:Organization |