Multifractal measures, especially for the geophysicist View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-03

AUTHORS

Benoît B. Mandelbrot

ABSTRACT

This text is addressed to both the beginner and the seasoned professional, geology being used as the main but not the sole illustration. The goal is to present an alternative approach to multifractals, extending and streamlining the original approach inMandelbrot (1974). The generalization from fractalsets to multifractalmeasures involves the passage from geometric objects that are characterized primarily by one number, namely a fractal dimension, to geometric objects that are characterized primarily by a function. The best is to choose the function ϱ(α), which is a limit probability distribution that has been plotted suitably, on double logarithmic scales. The quantity α is called Hölder exponent. In terms of the alternative functionf(α) used in the approach of Frisch-Parisi and of Halseyet al., one has ϱ(α)=f(α)−E for measures supported by the Euclidean space of dimensionE. Whenf(α)≥0,f(α) is a fractal dimension. However, one may havef(α)<0, in which case α is called “latent.” One may even have α<0, in which case α is called “virtual.” These anomalies' implications are explored, and experiments are suggested. Of central concern in this paper is the study of low-dimensional cuts through high-dimensional multifractals. This introduces a quantityDq, which is shown forq>1 to be a critical dimension for the cuts. An “enhanced multifractal diagram” is drawn, includingf(α), a function called τ(q) andDq. More... »

PAGES

5-42

References to SciGraph publications

Journal

TITLE

Pure and Applied Geophysics

ISSUE

1-2

VOLUME

131

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00874478

DOI

http://dx.doi.org/10.1007/bf00874478

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052188019


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Physics Department, IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY, USA", 
            "Mathematics Department, Yale University, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mandelbrot", 
        "givenName": "Beno\u00eet B.", 
        "id": "sg:person.016630605357.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016630605357.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0001-8708(76)90151-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004844100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(83)90753-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007477121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(83)90753-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007477121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01009448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008090872", 
          "https://doi.org/10.1007/bf01009448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(83)90235-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(83)90235-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177729330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020657190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(89)90093-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024724045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(89)90093-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024724045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-05716-1_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025161607", 
          "https://doi.org/10.1007/3-540-05716-1_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01160360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028103132", 
          "https://doi.org/10.1007/bf01160360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01160360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028103132", 
          "https://doi.org/10.1007/bf01160360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-2653-0_40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037972661", 
          "https://doi.org/10.1007/978-94-009-2653-0_40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-2124-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043447712", 
          "https://doi.org/10.1007/978-1-4899-2124-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-2124-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043447712", 
          "https://doi.org/10.1007/978-1-4899-2124-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074000711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047366412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074000711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047366412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176993370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052796270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.33.1141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.33.1141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.35.4907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.35.4907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.2352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.2352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.36.8925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060544688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.36.8925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060544688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.1424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.1424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177728652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069473609"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-03", 
    "datePublishedReg": "1989-03-01", 
    "description": "This text is addressed to both the beginner and the seasoned professional, geology being used as the main but not the sole illustration. The goal is to present an alternative approach to multifractals, extending and streamlining the original approach inMandelbrot (1974). The generalization from fractalsets to multifractalmeasures involves the passage from geometric objects that are characterized primarily by one number, namely a fractal dimension, to geometric objects that are characterized primarily by a function. The best is to choose the function \u03f1(\u03b1), which is a limit probability distribution that has been plotted suitably, on double logarithmic scales. The quantity \u03b1 is called H\u00f6lder exponent. In terms of the alternative functionf(\u03b1) used in the approach of Frisch-Parisi and of Halseyet al., one has \u03f1(\u03b1)=f(\u03b1)\u2212E for measures supported by the Euclidean space of dimensionE. Whenf(\u03b1)\u22650,f(\u03b1) is a fractal dimension. However, one may havef(\u03b1)<0, in which case \u03b1 is called \u201clatent.\u201d One may even have \u03b1<0, in which case \u03b1 is called \u201cvirtual.\u201d These anomalies' implications are explored, and experiments are suggested. Of central concern in this paper is the study of low-dimensional cuts through high-dimensional multifractals. This introduces a quantityDq, which is shown forq>1 to be a critical dimension for the cuts. An \u201cenhanced multifractal diagram\u201d is drawn, includingf(\u03b1), a function called \u03c4(q) andDq.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00874478", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136817", 
        "issn": [
          "0033-4553", 
          "1420-9136"
        ], 
        "name": "Pure and Applied Geophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "131"
      }
    ], 
    "name": "Multifractal measures, especially for the geophysicist", 
    "pagination": "5-42", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f8968e78af37d2b5cc4954893cf593c4af0e4c7d23e7790c68e8fc6d8de99779"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00874478"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052188019"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00874478", 
      "https://app.dimensions.ai/details/publication/pub.1052188019"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00874478"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00874478'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00874478'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00874478'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00874478'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00874478 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9e7292e4a6d741298017df746204ace0
4 schema:citation sg:pub.10.1007/3-540-05716-1_20
5 sg:pub.10.1007/978-1-4899-2124-6
6 sg:pub.10.1007/978-94-009-2653-0_40
7 sg:pub.10.1007/bf01009448
8 sg:pub.10.1007/bf01160360
9 https://doi.org/10.1016/0001-8708(76)90151-1
10 https://doi.org/10.1016/0167-2789(83)90235-x
11 https://doi.org/10.1016/0375-9601(83)90753-3
12 https://doi.org/10.1016/0375-9601(89)90093-5
13 https://doi.org/10.1017/s0022112074000711
14 https://doi.org/10.1103/physreva.33.1141
15 https://doi.org/10.1103/physreva.35.4907
16 https://doi.org/10.1103/physreva.36.2352
17 https://doi.org/10.1103/physrevb.36.8925
18 https://doi.org/10.1103/physrevlett.59.1424
19 https://doi.org/10.1103/physrevlett.60.673
20 https://doi.org/10.1103/physrevlett.61.74
21 https://doi.org/10.1103/physrevlett.62.1327
22 https://doi.org/10.1214/aoms/1177728652
23 https://doi.org/10.1214/aoms/1177729330
24 https://doi.org/10.1214/aop/1176993370
25 https://doi.org/10.2307/1403269
26 schema:datePublished 1989-03
27 schema:datePublishedReg 1989-03-01
28 schema:description This text is addressed to both the beginner and the seasoned professional, geology being used as the main but not the sole illustration. The goal is to present an alternative approach to multifractals, extending and streamlining the original approach inMandelbrot (1974). The generalization from fractalsets to multifractalmeasures involves the passage from geometric objects that are characterized primarily by one number, namely a fractal dimension, to geometric objects that are characterized primarily by a function. The best is to choose the function ϱ(α), which is a limit probability distribution that has been plotted suitably, on double logarithmic scales. The quantity α is called Hölder exponent. In terms of the alternative functionf(α) used in the approach of Frisch-Parisi and of Halseyet al., one has ϱ(α)=f(α)−E for measures supported by the Euclidean space of dimensionE. Whenf(α)≥0,f(α) is a fractal dimension. However, one may havef(α)<0, in which case α is called “latent.” One may even have α<0, in which case α is called “virtual.” These anomalies' implications are explored, and experiments are suggested. Of central concern in this paper is the study of low-dimensional cuts through high-dimensional multifractals. This introduces a quantityDq, which is shown forq>1 to be a critical dimension for the cuts. An “enhanced multifractal diagram” is drawn, includingf(α), a function called τ(q) andDq.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Ne08746bb8b9c4a9e9a86da319608405c
33 Nf492280e35334b5d9806868c410feeef
34 sg:journal.1136817
35 schema:name Multifractal measures, especially for the geophysicist
36 schema:pagination 5-42
37 schema:productId Nb1e7cdc8e3fb46f29db3278aa60228a0
38 Nd29b9d715fbd47e4b19dd02f5608bc1c
39 Ne41e777b3dec40b8b8f7bb249bebbc04
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052188019
41 https://doi.org/10.1007/bf00874478
42 schema:sdDatePublished 2019-04-10T21:33
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N4f6e956c45404390bee93eb627b95fde
45 schema:url http://link.springer.com/10.1007/BF00874478
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N4f6e956c45404390bee93eb627b95fde schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N9e7292e4a6d741298017df746204ace0 rdf:first sg:person.016630605357.73
52 rdf:rest rdf:nil
53 Nb1e7cdc8e3fb46f29db3278aa60228a0 schema:name dimensions_id
54 schema:value pub.1052188019
55 rdf:type schema:PropertyValue
56 Nd29b9d715fbd47e4b19dd02f5608bc1c schema:name readcube_id
57 schema:value f8968e78af37d2b5cc4954893cf593c4af0e4c7d23e7790c68e8fc6d8de99779
58 rdf:type schema:PropertyValue
59 Ne08746bb8b9c4a9e9a86da319608405c schema:volumeNumber 131
60 rdf:type schema:PublicationVolume
61 Ne41e777b3dec40b8b8f7bb249bebbc04 schema:name doi
62 schema:value 10.1007/bf00874478
63 rdf:type schema:PropertyValue
64 Nf492280e35334b5d9806868c410feeef schema:issueNumber 1-2
65 rdf:type schema:PublicationIssue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1136817 schema:issn 0033-4553
73 1420-9136
74 schema:name Pure and Applied Geophysics
75 rdf:type schema:Periodical
76 sg:person.016630605357.73 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
77 schema:familyName Mandelbrot
78 schema:givenName Benoît B.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016630605357.73
80 rdf:type schema:Person
81 sg:pub.10.1007/3-540-05716-1_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025161607
82 https://doi.org/10.1007/3-540-05716-1_20
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/978-1-4899-2124-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043447712
85 https://doi.org/10.1007/978-1-4899-2124-6
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-94-009-2653-0_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037972661
88 https://doi.org/10.1007/978-94-009-2653-0_40
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01009448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008090872
91 https://doi.org/10.1007/bf01009448
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01160360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028103132
94 https://doi.org/10.1007/bf01160360
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0001-8708(76)90151-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004844100
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0167-2789(83)90235-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061529
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0375-9601(83)90753-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007477121
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0375-9601(89)90093-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024724045
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1017/s0022112074000711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047366412
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physreva.33.1141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060474178
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physreva.35.4907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060476111
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physreva.36.2352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060476432
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevb.36.8925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060544688
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevlett.59.1424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795599
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevlett.60.673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797340
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevlett.61.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798258
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.62.1327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798454
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1214/aoms/1177728652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401470
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1214/aoms/1177729330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020657190
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1214/aop/1176993370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052796270
127 rdf:type schema:CreativeWork
128 https://doi.org/10.2307/1403269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473609
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
131 schema:name Mathematics Department, Yale University, 06520, New Haven, CT, USA
132 Physics Department, IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY, USA
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...