The ionic product of water in highly concentrated aqueous electrolyte solutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-08

AUTHORS

I. Kron, S. L. Marshall, P. M. May, G. Hefter, E. Königsberger

ABSTRACT

The ionic product of water,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$K_w = [H^ + ][OH^ - ] = 10^{ - pK_w } $$ \end{document}, has been determined in aqueous NaCl (0.5–5.0M), KCl (3.0M), NaNO3 (3.0 and 5.0M), and KNO3 (2.5M) at 25 °C from high-precision potentiometric titrations carried out in cells with liquid junction using either glass or hydrogen electrodes. Measurements ofKw provide a set of self-consistent data that can be used in the estimation of activity coefficient changes and liquid junction potentials in the study of extremely concentrated electrolyte solutions. Where comparison is possible, results obtained by hydrogen electrode measurements are in excellent agreement (ca ± 0.005 inpKw) with other reliable experimental values and the predictions of thePitzer activity-coefficient model. The glass electrode results are, as expected, routinely lower (by 0.03–0.05pKw units), owing to interference by Na+ ions. This effect virtually disappears in solutions of potassium salts. Comparison of the experimental results with thePitzer predictions shows that knowledge of the ternary interaction parameters is essential to account for specific ionic effects in the concentration dependence ofpKw. More... »

PAGES

819-837

References to SciGraph publications

  • 1990-12. ChemSage—A computer program for the calculation of complex chemical equilibria in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00811002

    DOI

    http://dx.doi.org/10.1007/bf00811002

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001612060


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1025.6", 
              "name": [
                "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kron", 
            "givenName": "I.", 
            "id": "sg:person.01331762451.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331762451.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1025.6", 
              "name": [
                "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marshall", 
            "givenName": "S. L.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1025.6", 
              "name": [
                "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "May", 
            "givenName": "P. M.", 
            "id": "sg:person.01210016340.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210016340.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1025.6", 
              "name": [
                "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hefter", 
            "givenName": "G.", 
            "id": "sg:person.01067213367.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067213367.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1025.6", 
              "name": [
                "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u00f6nigsberger", 
            "givenName": "E.", 
            "id": "sg:person.01201634674.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201634674.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02670272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047565109", 
              "https://doi.org/10.1007/bf02670272"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-08", 
        "datePublishedReg": "1995-08-01", 
        "description": "The ionic product of water,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$K_w  = [H^ +  ][OH^ -  ] = 10^{ - pK_w } $$\n\\end{document}, has been determined in aqueous NaCl (0.5\u20135.0M), KCl (3.0M), NaNO3 (3.0 and 5.0M), and KNO3 (2.5M) at 25 \u00b0C from high-precision potentiometric titrations carried out in cells with liquid junction using either glass or hydrogen electrodes. Measurements ofKw provide a set of self-consistent data that can be used in the estimation of activity coefficient changes and liquid junction potentials in the study of extremely concentrated electrolyte solutions. Where comparison is possible, results obtained by hydrogen electrode measurements are in excellent agreement (ca \u00b1 0.005 inpKw) with other reliable experimental values and the predictions of thePitzer activity-coefficient model. The glass electrode results are, as expected, routinely lower (by 0.03\u20130.05pKw units), owing to interference by Na+ ions. This effect virtually disappears in solutions of potassium salts. Comparison of the experimental results with thePitzer predictions shows that knowledge of the ternary interaction parameters is essential to account for specific ionic effects in the concentration dependence ofpKw.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00811002", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1345587", 
            "issn": [
              "0343-7329", 
              "0026-9247"
            ], 
            "name": "Monatshefte f\u00fcr Chemie - Chemical Monthly", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8-9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "126"
          }
        ], 
        "keywords": [
          "high-precision potentiometric titrations", 
          "electrolyte solution", 
          "ternary interaction parameters", 
          "activity-coefficient models", 
          "electrode results", 
          "reliable experimental values", 
          "aqueous electrolyte solutions", 
          "coefficient changes", 
          "hydrogen electrode", 
          "experimental results", 
          "self-consistent data", 
          "liquid junction", 
          "excellent agreement", 
          "experimental values", 
          "interaction parameters", 
          "electrode measurements", 
          "ionic products", 
          "aqueous NaCl", 
          "concentrated aqueous electrolyte solutions", 
          "solution", 
          "glass", 
          "prediction", 
          "electrode", 
          "liquid junction potential", 
          "water", 
          "concentrated electrolyte solutions", 
          "results", 
          "activity coefficient changes", 
          "estimation", 
          "measurements", 
          "parameters", 
          "products", 
          "NaNO3", 
          "comparison", 
          "agreement", 
          "effect", 
          "potentiometric titration", 
          "model", 
          "junctions", 
          "interference", 
          "salt", 
          "KNO3", 
          "potential", 
          "values", 
          "ions", 
          "NaCl", 
          "potassium salt", 
          "ionic effects", 
          "data", 
          "set", 
          "changes", 
          "study", 
          "junction potentials", 
          "KCl", 
          "specific ionic effects", 
          "titration", 
          "knowledge", 
          "cells", 
          "Measurements ofKw", 
          "ofKw", 
          "hydrogen electrode measurements", 
          "thePitzer activity-coefficient model", 
          "glass electrode results", 
          "thePitzer predictions", 
          "concentration dependence ofpKw", 
          "dependence ofpKw", 
          "ofpKw"
        ], 
        "name": "The ionic product of water in highly concentrated aqueous electrolyte solutions", 
        "pagination": "819-837", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001612060"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00811002"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00811002", 
          "https://app.dimensions.ai/details/publication/pub.1001612060"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_301.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00811002"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00811002'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00811002'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00811002'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00811002'


     

    This table displays all metadata directly associated to this object as RDF triples.

    156 TRIPLES      22 PREDICATES      94 URIs      85 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00811002 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Ne912441e5a4041f6bcbd797364d03d72
    4 schema:citation sg:pub.10.1007/bf02670272
    5 schema:datePublished 1995-08
    6 schema:datePublishedReg 1995-08-01
    7 schema:description The ionic product of water,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$K_w = [H^ + ][OH^ - ] = 10^{ - pK_w } $$ \end{document}, has been determined in aqueous NaCl (0.5–5.0M), KCl (3.0M), NaNO3 (3.0 and 5.0M), and KNO3 (2.5M) at 25 °C from high-precision potentiometric titrations carried out in cells with liquid junction using either glass or hydrogen electrodes. Measurements ofKw provide a set of self-consistent data that can be used in the estimation of activity coefficient changes and liquid junction potentials in the study of extremely concentrated electrolyte solutions. Where comparison is possible, results obtained by hydrogen electrode measurements are in excellent agreement (ca ± 0.005 inpKw) with other reliable experimental values and the predictions of thePitzer activity-coefficient model. The glass electrode results are, as expected, routinely lower (by 0.03–0.05pKw units), owing to interference by Na+ ions. This effect virtually disappears in solutions of potassium salts. Comparison of the experimental results with thePitzer predictions shows that knowledge of the ternary interaction parameters is essential to account for specific ionic effects in the concentration dependence ofpKw.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N253a775b269a4887ba4eebf68b5e941d
    12 N5db7d35bb6ec454980782956a4d47144
    13 sg:journal.1345587
    14 schema:keywords KCl
    15 KNO3
    16 Measurements ofKw
    17 NaCl
    18 NaNO3
    19 activity coefficient changes
    20 activity-coefficient models
    21 agreement
    22 aqueous NaCl
    23 aqueous electrolyte solutions
    24 cells
    25 changes
    26 coefficient changes
    27 comparison
    28 concentrated aqueous electrolyte solutions
    29 concentrated electrolyte solutions
    30 concentration dependence ofpKw
    31 data
    32 dependence ofpKw
    33 effect
    34 electrode
    35 electrode measurements
    36 electrode results
    37 electrolyte solution
    38 estimation
    39 excellent agreement
    40 experimental results
    41 experimental values
    42 glass
    43 glass electrode results
    44 high-precision potentiometric titrations
    45 hydrogen electrode
    46 hydrogen electrode measurements
    47 interaction parameters
    48 interference
    49 ionic effects
    50 ionic products
    51 ions
    52 junction potentials
    53 junctions
    54 knowledge
    55 liquid junction
    56 liquid junction potential
    57 measurements
    58 model
    59 ofKw
    60 ofpKw
    61 parameters
    62 potassium salt
    63 potential
    64 potentiometric titration
    65 prediction
    66 products
    67 reliable experimental values
    68 results
    69 salt
    70 self-consistent data
    71 set
    72 solution
    73 specific ionic effects
    74 study
    75 ternary interaction parameters
    76 thePitzer activity-coefficient model
    77 thePitzer predictions
    78 titration
    79 values
    80 water
    81 schema:name The ionic product of water in highly concentrated aqueous electrolyte solutions
    82 schema:pagination 819-837
    83 schema:productId N0cf22c9cb8f04d0a9f1751bda4dd9726
    84 N36eba0217a2a47ae9f8d06fd1df64d87
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001612060
    86 https://doi.org/10.1007/bf00811002
    87 schema:sdDatePublished 2022-01-01T18:09
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher Nc418b3efe2d04446b8d1de3a51c87421
    90 schema:url https://doi.org/10.1007/bf00811002
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N0cf22c9cb8f04d0a9f1751bda4dd9726 schema:name doi
    95 schema:value 10.1007/bf00811002
    96 rdf:type schema:PropertyValue
    97 N253a775b269a4887ba4eebf68b5e941d schema:issueNumber 8-9
    98 rdf:type schema:PublicationIssue
    99 N27adc32fda03423f8d189be42255783f schema:affiliation grid-institutes:grid.1025.6
    100 schema:familyName Marshall
    101 schema:givenName S. L.
    102 rdf:type schema:Person
    103 N36eba0217a2a47ae9f8d06fd1df64d87 schema:name dimensions_id
    104 schema:value pub.1001612060
    105 rdf:type schema:PropertyValue
    106 N547fe54a000a4fac92ebac53af45fb29 rdf:first sg:person.01201634674.29
    107 rdf:rest rdf:nil
    108 N5db7d35bb6ec454980782956a4d47144 schema:volumeNumber 126
    109 rdf:type schema:PublicationVolume
    110 N7112f590a555422faea3eb875747e091 rdf:first N27adc32fda03423f8d189be42255783f
    111 rdf:rest N9e4a085e7ea8412d9ba26818ecd6eb8b
    112 N8a3e5d31b3c947e89bffe78dc85e16fa rdf:first sg:person.01067213367.96
    113 rdf:rest N547fe54a000a4fac92ebac53af45fb29
    114 N9e4a085e7ea8412d9ba26818ecd6eb8b rdf:first sg:person.01210016340.45
    115 rdf:rest N8a3e5d31b3c947e89bffe78dc85e16fa
    116 Nc418b3efe2d04446b8d1de3a51c87421 schema:name Springer Nature - SN SciGraph project
    117 rdf:type schema:Organization
    118 Ne912441e5a4041f6bcbd797364d03d72 rdf:first sg:person.01331762451.62
    119 rdf:rest N7112f590a555422faea3eb875747e091
    120 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Chemical Sciences
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Physical Chemistry (incl. Structural)
    125 rdf:type schema:DefinedTerm
    126 sg:journal.1345587 schema:issn 0026-9247
    127 0343-7329
    128 schema:name Monatshefte für Chemie - Chemical Monthly
    129 schema:publisher Springer Nature
    130 rdf:type schema:Periodical
    131 sg:person.01067213367.96 schema:affiliation grid-institutes:grid.1025.6
    132 schema:familyName Hefter
    133 schema:givenName G.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067213367.96
    135 rdf:type schema:Person
    136 sg:person.01201634674.29 schema:affiliation grid-institutes:grid.1025.6
    137 schema:familyName Königsberger
    138 schema:givenName E.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201634674.29
    140 rdf:type schema:Person
    141 sg:person.01210016340.45 schema:affiliation grid-institutes:grid.1025.6
    142 schema:familyName May
    143 schema:givenName P. M.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210016340.45
    145 rdf:type schema:Person
    146 sg:person.01331762451.62 schema:affiliation grid-institutes:grid.1025.6
    147 schema:familyName Kron
    148 schema:givenName I.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331762451.62
    150 rdf:type schema:Person
    151 sg:pub.10.1007/bf02670272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047565109
    152 https://doi.org/10.1007/bf02670272
    153 rdf:type schema:CreativeWork
    154 grid-institutes:grid.1025.6 schema:alternateName A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia
    155 schema:name A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia
    156 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...