The ionic product of water in highly concentrated aqueous electrolyte solutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-08

AUTHORS

I. Kron, S. L. Marshall, P. M. May, G. Hefter, E. Königsberger

ABSTRACT

The ionic product of water,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$K_w = [H^ + ][OH^ - ] = 10^{ - pK_w } $$ \end{document}, has been determined in aqueous NaCl (0.5–5.0M), KCl (3.0M), NaNO3 (3.0 and 5.0M), and KNO3 (2.5M) at 25 °C from high-precision potentiometric titrations carried out in cells with liquid junction using either glass or hydrogen electrodes. Measurements ofKw provide a set of self-consistent data that can be used in the estimation of activity coefficient changes and liquid junction potentials in the study of extremely concentrated electrolyte solutions. Where comparison is possible, results obtained by hydrogen electrode measurements are in excellent agreement (ca ± 0.005 inpKw) with other reliable experimental values and the predictions of thePitzer activity-coefficient model. The glass electrode results are, as expected, routinely lower (by 0.03–0.05pKw units), owing to interference by Na+ ions. This effect virtually disappears in solutions of potassium salts. Comparison of the experimental results with thePitzer predictions shows that knowledge of the ternary interaction parameters is essential to account for specific ionic effects in the concentration dependence ofpKw. More... »

PAGES

819-837

References to SciGraph publications

  • 1990-12. ChemSage—A computer program for the calculation of complex chemical equilibria in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00811002

    DOI

    http://dx.doi.org/10.1007/bf00811002

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001612060


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1025.6", 
              "name": [
                "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kron", 
            "givenName": "I.", 
            "id": "sg:person.01331762451.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331762451.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1025.6", 
              "name": [
                "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marshall", 
            "givenName": "S. L.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1025.6", 
              "name": [
                "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "May", 
            "givenName": "P. M.", 
            "id": "sg:person.01210016340.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210016340.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1025.6", 
              "name": [
                "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hefter", 
            "givenName": "G.", 
            "id": "sg:person.01067213367.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067213367.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1025.6", 
              "name": [
                "A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u00f6nigsberger", 
            "givenName": "E.", 
            "id": "sg:person.01201634674.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201634674.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02670272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047565109", 
              "https://doi.org/10.1007/bf02670272"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-08", 
        "datePublishedReg": "1995-08-01", 
        "description": "The ionic product of water,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$K_w  = [H^ +  ][OH^ -  ] = 10^{ - pK_w } $$\n\\end{document}, has been determined in aqueous NaCl (0.5\u20135.0M), KCl (3.0M), NaNO3 (3.0 and 5.0M), and KNO3 (2.5M) at 25 \u00b0C from high-precision potentiometric titrations carried out in cells with liquid junction using either glass or hydrogen electrodes. Measurements ofKw provide a set of self-consistent data that can be used in the estimation of activity coefficient changes and liquid junction potentials in the study of extremely concentrated electrolyte solutions. Where comparison is possible, results obtained by hydrogen electrode measurements are in excellent agreement (ca \u00b1 0.005 inpKw) with other reliable experimental values and the predictions of thePitzer activity-coefficient model. The glass electrode results are, as expected, routinely lower (by 0.03\u20130.05pKw units), owing to interference by Na+ ions. This effect virtually disappears in solutions of potassium salts. Comparison of the experimental results with thePitzer predictions shows that knowledge of the ternary interaction parameters is essential to account for specific ionic effects in the concentration dependence ofpKw.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00811002", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1345587", 
            "issn": [
              "0343-7329", 
              "0026-9247"
            ], 
            "name": "Monatshefte f\u00fcr Chemie - Chemical Monthly", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8-9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "126"
          }
        ], 
        "keywords": [
          "high-precision potentiometric titrations", 
          "electrolyte solution", 
          "ternary interaction parameters", 
          "activity-coefficient models", 
          "electrode results", 
          "reliable experimental values", 
          "aqueous electrolyte solutions", 
          "coefficient changes", 
          "hydrogen electrode", 
          "experimental results", 
          "self-consistent data", 
          "liquid junction", 
          "excellent agreement", 
          "experimental values", 
          "interaction parameters", 
          "electrode measurements", 
          "ionic products", 
          "aqueous NaCl", 
          "concentrated aqueous electrolyte solutions", 
          "solution", 
          "glass", 
          "prediction", 
          "electrode", 
          "liquid junction potential", 
          "water", 
          "concentrated electrolyte solutions", 
          "results", 
          "activity coefficient changes", 
          "estimation", 
          "measurements", 
          "parameters", 
          "products", 
          "NaNO3", 
          "comparison", 
          "agreement", 
          "effect", 
          "potentiometric titration", 
          "model", 
          "junctions", 
          "interference", 
          "salt", 
          "KNO3", 
          "potential", 
          "values", 
          "ions", 
          "NaCl", 
          "potassium salt", 
          "ionic effects", 
          "data", 
          "set", 
          "changes", 
          "study", 
          "junction potentials", 
          "KCl", 
          "specific ionic effects", 
          "titration", 
          "knowledge", 
          "cells", 
          "Measurements ofKw", 
          "ofKw", 
          "hydrogen electrode measurements", 
          "thePitzer activity-coefficient model", 
          "glass electrode results", 
          "thePitzer predictions", 
          "concentration dependence ofpKw", 
          "dependence ofpKw", 
          "ofpKw"
        ], 
        "name": "The ionic product of water in highly concentrated aqueous electrolyte solutions", 
        "pagination": "819-837", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001612060"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00811002"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00811002", 
          "https://app.dimensions.ai/details/publication/pub.1001612060"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_269.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00811002"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00811002'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00811002'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00811002'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00811002'


     

    This table displays all metadata directly associated to this object as RDF triples.

    156 TRIPLES      22 PREDICATES      94 URIs      85 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00811002 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nb0353befa0b146bab2f41f44d9d4be8a
    4 schema:citation sg:pub.10.1007/bf02670272
    5 schema:datePublished 1995-08
    6 schema:datePublishedReg 1995-08-01
    7 schema:description The ionic product of water,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$K_w = [H^ + ][OH^ - ] = 10^{ - pK_w } $$ \end{document}, has been determined in aqueous NaCl (0.5–5.0M), KCl (3.0M), NaNO3 (3.0 and 5.0M), and KNO3 (2.5M) at 25 °C from high-precision potentiometric titrations carried out in cells with liquid junction using either glass or hydrogen electrodes. Measurements ofKw provide a set of self-consistent data that can be used in the estimation of activity coefficient changes and liquid junction potentials in the study of extremely concentrated electrolyte solutions. Where comparison is possible, results obtained by hydrogen electrode measurements are in excellent agreement (ca ± 0.005 inpKw) with other reliable experimental values and the predictions of thePitzer activity-coefficient model. The glass electrode results are, as expected, routinely lower (by 0.03–0.05pKw units), owing to interference by Na+ ions. This effect virtually disappears in solutions of potassium salts. Comparison of the experimental results with thePitzer predictions shows that knowledge of the ternary interaction parameters is essential to account for specific ionic effects in the concentration dependence ofpKw.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N7c0578181394471690dfcb9675c1e09a
    12 N997b89f25b204c92aa3a9cd83e0b02fc
    13 sg:journal.1345587
    14 schema:keywords KCl
    15 KNO3
    16 Measurements ofKw
    17 NaCl
    18 NaNO3
    19 activity coefficient changes
    20 activity-coefficient models
    21 agreement
    22 aqueous NaCl
    23 aqueous electrolyte solutions
    24 cells
    25 changes
    26 coefficient changes
    27 comparison
    28 concentrated aqueous electrolyte solutions
    29 concentrated electrolyte solutions
    30 concentration dependence ofpKw
    31 data
    32 dependence ofpKw
    33 effect
    34 electrode
    35 electrode measurements
    36 electrode results
    37 electrolyte solution
    38 estimation
    39 excellent agreement
    40 experimental results
    41 experimental values
    42 glass
    43 glass electrode results
    44 high-precision potentiometric titrations
    45 hydrogen electrode
    46 hydrogen electrode measurements
    47 interaction parameters
    48 interference
    49 ionic effects
    50 ionic products
    51 ions
    52 junction potentials
    53 junctions
    54 knowledge
    55 liquid junction
    56 liquid junction potential
    57 measurements
    58 model
    59 ofKw
    60 ofpKw
    61 parameters
    62 potassium salt
    63 potential
    64 potentiometric titration
    65 prediction
    66 products
    67 reliable experimental values
    68 results
    69 salt
    70 self-consistent data
    71 set
    72 solution
    73 specific ionic effects
    74 study
    75 ternary interaction parameters
    76 thePitzer activity-coefficient model
    77 thePitzer predictions
    78 titration
    79 values
    80 water
    81 schema:name The ionic product of water in highly concentrated aqueous electrolyte solutions
    82 schema:pagination 819-837
    83 schema:productId N04b1f2b522c2499f90a5e93f1ed57155
    84 N3fce6342c18e498aa49c90a885a9dbbe
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001612060
    86 https://doi.org/10.1007/bf00811002
    87 schema:sdDatePublished 2021-12-01T19:09
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher Na463ff0fef5e47f5a7e9be90a56c5c4a
    90 schema:url https://doi.org/10.1007/bf00811002
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N04b1f2b522c2499f90a5e93f1ed57155 schema:name doi
    95 schema:value 10.1007/bf00811002
    96 rdf:type schema:PropertyValue
    97 N3fce6342c18e498aa49c90a885a9dbbe schema:name dimensions_id
    98 schema:value pub.1001612060
    99 rdf:type schema:PropertyValue
    100 N4de5ddc23d904c468cd32897dc45fb5f rdf:first sg:person.01067213367.96
    101 rdf:rest Na3987d4f8a1842bb8f20c9083a7964e2
    102 N5af109bd15054e649e49602b1cd23f0f schema:affiliation grid-institutes:grid.1025.6
    103 schema:familyName Marshall
    104 schema:givenName S. L.
    105 rdf:type schema:Person
    106 N7c0578181394471690dfcb9675c1e09a schema:issueNumber 8-9
    107 rdf:type schema:PublicationIssue
    108 N997b89f25b204c92aa3a9cd83e0b02fc schema:volumeNumber 126
    109 rdf:type schema:PublicationVolume
    110 N9f05ddc9ed4649869f27b51fffba8656 rdf:first N5af109bd15054e649e49602b1cd23f0f
    111 rdf:rest Ncc516364d1b14748b11f91e33c99266f
    112 Na3987d4f8a1842bb8f20c9083a7964e2 rdf:first sg:person.01201634674.29
    113 rdf:rest rdf:nil
    114 Na463ff0fef5e47f5a7e9be90a56c5c4a schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 Nb0353befa0b146bab2f41f44d9d4be8a rdf:first sg:person.01331762451.62
    117 rdf:rest N9f05ddc9ed4649869f27b51fffba8656
    118 Ncc516364d1b14748b11f91e33c99266f rdf:first sg:person.01210016340.45
    119 rdf:rest N4de5ddc23d904c468cd32897dc45fb5f
    120 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Chemical Sciences
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Physical Chemistry (incl. Structural)
    125 rdf:type schema:DefinedTerm
    126 sg:journal.1345587 schema:issn 0026-9247
    127 0343-7329
    128 schema:name Monatshefte für Chemie - Chemical Monthly
    129 schema:publisher Springer Nature
    130 rdf:type schema:Periodical
    131 sg:person.01067213367.96 schema:affiliation grid-institutes:grid.1025.6
    132 schema:familyName Hefter
    133 schema:givenName G.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067213367.96
    135 rdf:type schema:Person
    136 sg:person.01201634674.29 schema:affiliation grid-institutes:grid.1025.6
    137 schema:familyName Königsberger
    138 schema:givenName E.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201634674.29
    140 rdf:type schema:Person
    141 sg:person.01210016340.45 schema:affiliation grid-institutes:grid.1025.6
    142 schema:familyName May
    143 schema:givenName P. M.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210016340.45
    145 rdf:type schema:Person
    146 sg:person.01331762451.62 schema:affiliation grid-institutes:grid.1025.6
    147 schema:familyName Kron
    148 schema:givenName I.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331762451.62
    150 rdf:type schema:Person
    151 sg:pub.10.1007/bf02670272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047565109
    152 https://doi.org/10.1007/bf02670272
    153 rdf:type schema:CreativeWork
    154 grid-institutes:grid.1025.6 schema:alternateName A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia
    155 schema:name A. J. Parker Cooperative Research Centre for Hydrometallurgy, School of Mathematical and Physical Sciences, Murdoch University, 6150, Murdoch, WA, Australia
    156 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...