Enantioselective catalysis, C. Decarboxylation of malonic acids in the presence of copper(I) compounds — Not a copper(I) catalysis but a ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-08

AUTHORS

H. Brunner, J. Müller, J. Spitzer

ABSTRACT

The catalytic decarboxylation of malonic acids, claimed to be catalyzed by copper(I) compounds, has been investigated. Decarboxylation of different malonic acid derivatives (1–5) in acetonitrile was far more effective with Cu2O than with CuCl. Thus, the decarboxylation is obviously influenced by the basicity of the anion. In the decarboxylation of phenylmalonic acid (3),bis(tricyclohexylphosphane)copper(I) hydrogenphenylmalonate (6) and potassium hydrogenphenylmalonate (7) show nearly identical rate constants. It is concluded that the monoanions of the malonic acid derivatives are the reactive species undergoing decarboxylation. Further experiments are presented which demonstrate that everything that increases the concentration of the monoanions also increases the rate of decarboxylation. In the enantioselective decarboxylation of the monoethyl ester of methylphenylmalonic acid (2), the enantiomeric excess of (S)-(+)-ethyl 2-phenylpropionate could be raised to 34.5%ee using the alkaloid cinchonine. More... »

PAGES

845-858

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00807023

DOI

http://dx.doi.org/10.1007/bf00807023

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043034805


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Regensburg", 
          "id": "https://www.grid.ac/institutes/grid.7727.5", 
          "name": [
            "Institut f\u00fcr Anorganische Chemie, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brunner", 
        "givenName": "H.", 
        "id": "sg:person.013162531317.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013162531317.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Regensburg", 
          "id": "https://www.grid.ac/institutes/grid.7727.5", 
          "name": [
            "Institut f\u00fcr Anorganische Chemie, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Regensburg", 
          "id": "https://www.grid.ac/institutes/grid.7727.5", 
          "name": [
            "Institut f\u00fcr Anorganische Chemie, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spitzer", 
        "givenName": "J.", 
        "id": "sg:person.012532631403.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012532631403.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0040-4039(00)95776-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032823741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01045304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051362106", 
          "https://doi.org/10.1007/bf01045304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jlac.19606340103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053097254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic00081a022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055541378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic00113a021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055542994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jo00399a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055983466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-1986-31861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057391651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3891/acta.chem.scand.25-3451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071494474"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-08", 
    "datePublishedReg": "1996-08-01", 
    "description": "The catalytic decarboxylation of malonic acids, claimed to be catalyzed by copper(I) compounds, has been investigated. Decarboxylation of different malonic acid derivatives (1\u20135) in acetonitrile was far more effective with Cu2O than with CuCl. Thus, the decarboxylation is obviously influenced by the basicity of the anion. In the decarboxylation of phenylmalonic acid (3),bis(tricyclohexylphosphane)copper(I) hydrogenphenylmalonate (6) and potassium hydrogenphenylmalonate (7) show nearly identical rate constants. It is concluded that the monoanions of the malonic acid derivatives are the reactive species undergoing decarboxylation. Further experiments are presented which demonstrate that everything that increases the concentration of the monoanions also increases the rate of decarboxylation. In the enantioselective decarboxylation of the monoethyl ester of methylphenylmalonic acid (2), the enantiomeric excess of (S)-(+)-ethyl 2-phenylpropionate could be raised to 34.5%ee using the alkaloid cinchonine.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00807023", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1345587", 
        "issn": [
          "0343-7329", 
          "0026-9247"
        ], 
        "name": "Monatshefte f\u00fcr Chemie - Chemical Monthly", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8-9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "Enantioselective catalysis, C. Decarboxylation of malonic acids in the presence of copper(I) compounds \u2014 Not a copper(I) catalysis but a base effect", 
    "pagination": "845-858", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ccfd3b230fcf3ea98ea19928876df0d7e83632893004925074f3b42f4b47ffbc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00807023"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043034805"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00807023", 
      "https://app.dimensions.ai/details/publication/pub.1043034805"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46779_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00807023"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00807023'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00807023'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00807023'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00807023'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00807023 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N50067f36b9624c3b96eb35fd53654fe7
4 schema:citation sg:pub.10.1007/bf01045304
5 https://doi.org/10.1002/jlac.19606340103
6 https://doi.org/10.1016/s0040-4039(00)95776-9
7 https://doi.org/10.1021/ic00081a022
8 https://doi.org/10.1021/ic00113a021
9 https://doi.org/10.1021/jo00399a010
10 https://doi.org/10.1055/s-1986-31861
11 https://doi.org/10.3891/acta.chem.scand.25-3451
12 schema:datePublished 1996-08
13 schema:datePublishedReg 1996-08-01
14 schema:description The catalytic decarboxylation of malonic acids, claimed to be catalyzed by copper(I) compounds, has been investigated. Decarboxylation of different malonic acid derivatives (1–5) in acetonitrile was far more effective with Cu2O than with CuCl. Thus, the decarboxylation is obviously influenced by the basicity of the anion. In the decarboxylation of phenylmalonic acid (3),bis(tricyclohexylphosphane)copper(I) hydrogenphenylmalonate (6) and potassium hydrogenphenylmalonate (7) show nearly identical rate constants. It is concluded that the monoanions of the malonic acid derivatives are the reactive species undergoing decarboxylation. Further experiments are presented which demonstrate that everything that increases the concentration of the monoanions also increases the rate of decarboxylation. In the enantioselective decarboxylation of the monoethyl ester of methylphenylmalonic acid (2), the enantiomeric excess of (S)-(+)-ethyl 2-phenylpropionate could be raised to 34.5%ee using the alkaloid cinchonine.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N25d908a4f2804a8d98fb8253e5b4904e
19 N7c7eee0feb034200908bbfaf1ec54aa7
20 sg:journal.1345587
21 schema:name Enantioselective catalysis, C. Decarboxylation of malonic acids in the presence of copper(I) compounds — Not a copper(I) catalysis but a base effect
22 schema:pagination 845-858
23 schema:productId N4dc5c22dee7349318e5f77e4b1c02fc6
24 N66664b91ccf5439aa803c67c8c0efc08
25 Ncf2cebf92a2844bf83b4e5a15887f016
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043034805
27 https://doi.org/10.1007/bf00807023
28 schema:sdDatePublished 2019-04-11T13:36
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nf312c9c588964d27b37f8fa68cf29d1f
31 schema:url http://link.springer.com/10.1007/BF00807023
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N25d908a4f2804a8d98fb8253e5b4904e schema:issueNumber 8-9
36 rdf:type schema:PublicationIssue
37 N3d4512fb870549029995af413851fe55 rdf:first Nff1b5a43b25a4433b4839beb50d6510c
38 rdf:rest N95e7e2f71cb3440ab96485d28467230c
39 N4dc5c22dee7349318e5f77e4b1c02fc6 schema:name dimensions_id
40 schema:value pub.1043034805
41 rdf:type schema:PropertyValue
42 N50067f36b9624c3b96eb35fd53654fe7 rdf:first sg:person.013162531317.11
43 rdf:rest N3d4512fb870549029995af413851fe55
44 N66664b91ccf5439aa803c67c8c0efc08 schema:name readcube_id
45 schema:value ccfd3b230fcf3ea98ea19928876df0d7e83632893004925074f3b42f4b47ffbc
46 rdf:type schema:PropertyValue
47 N7c7eee0feb034200908bbfaf1ec54aa7 schema:volumeNumber 127
48 rdf:type schema:PublicationVolume
49 N95e7e2f71cb3440ab96485d28467230c rdf:first sg:person.012532631403.35
50 rdf:rest rdf:nil
51 Ncf2cebf92a2844bf83b4e5a15887f016 schema:name doi
52 schema:value 10.1007/bf00807023
53 rdf:type schema:PropertyValue
54 Nf312c9c588964d27b37f8fa68cf29d1f schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nff1b5a43b25a4433b4839beb50d6510c schema:affiliation https://www.grid.ac/institutes/grid.7727.5
57 schema:familyName Müller
58 schema:givenName J.
59 rdf:type schema:Person
60 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
61 schema:name Chemical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
64 schema:name Physical Chemistry (incl. Structural)
65 rdf:type schema:DefinedTerm
66 sg:journal.1345587 schema:issn 0026-9247
67 0343-7329
68 schema:name Monatshefte für Chemie - Chemical Monthly
69 rdf:type schema:Periodical
70 sg:person.012532631403.35 schema:affiliation https://www.grid.ac/institutes/grid.7727.5
71 schema:familyName Spitzer
72 schema:givenName J.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012532631403.35
74 rdf:type schema:Person
75 sg:person.013162531317.11 schema:affiliation https://www.grid.ac/institutes/grid.7727.5
76 schema:familyName Brunner
77 schema:givenName H.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013162531317.11
79 rdf:type schema:Person
80 sg:pub.10.1007/bf01045304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051362106
81 https://doi.org/10.1007/bf01045304
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1002/jlac.19606340103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053097254
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/s0040-4039(00)95776-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032823741
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1021/ic00081a022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055541378
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1021/ic00113a021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055542994
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1021/jo00399a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055983466
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1055/s-1986-31861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057391651
94 rdf:type schema:CreativeWork
95 https://doi.org/10.3891/acta.chem.scand.25-3451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071494474
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.7727.5 schema:alternateName University of Regensburg
98 schema:name Institut für Anorganische Chemie, Universität Regensburg, D-93040, Regensburg, Germany
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...