Strength loss during the annealing of deformed nickel-alumina alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1967-03

AUTHORS

V. A. Kulikov, V. M. Sergeenkova, A. P. Savitskii, V. V. Grigor'eva, K. V. Savitskii

ABSTRACT

Powder metallurgical nickel-alumina alloys prepared by the method of high-temperature sintering and then subjected to compressive deformation at room temperature exhibit a strength loss at the same annealing temperature as does pure nickel. However, the intensity of strength loss for the alloys is much lower than for pure nickel; the strength loss comes to an end at higher annealing temperatures, and after the completion of recrystallization the alloys retain a smaller grain size and a higher level of hardness.The extrusion of such alloys leads to the establishment of a structure which is even more stable at high annealing temperatures. The initial strength loss temperature of extruded alloys is 400–500°C higher than that of nickel. A hardness which is twice as high as that of nickel is retained up to an annealing temperature of 1000–1100°C.In extruded alloys subjected to additional cold deformation, two strength loss maxima are clearly detected. The temperature of the first strength loss maximum coincides with the strength loss temperature of pure nickel, and is associated with the partial recrystallization of the nickel matrix regions situated between the aluminum oxide particles. The second maximum occurs at a temperature above 1000°C, and is due to the growing recrystallization nuclei rupturing the oxide particle barrier.The hardness of extruded alloys subjected to additional cold deformation and annealed at 600–700°C or higher is less than the hardness of undeformed extruded alloys annealed at the same temperature, but is nevertheless much higher than the hardness of sintered unextruded alloys and of pure nickel. More... »

PAGES

211-216

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00775668

DOI

http://dx.doi.org/10.1007/bf00775668

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026380462


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute, USSR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute, USSR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulikov", 
        "givenName": "V. A.", 
        "id": "sg:person.016342027024.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342027024.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute, USSR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute, USSR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sergeenkova", 
        "givenName": "V. M.", 
        "id": "sg:person.015373075265.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015373075265.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute, USSR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute, USSR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Savitskii", 
        "givenName": "A. P.", 
        "id": "sg:person.013277447465.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013277447465.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute, USSR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute, USSR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grigor'eva", 
        "givenName": "V. V.", 
        "id": "sg:person.014217620624.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014217620624.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute, USSR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute, USSR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Savitskii", 
        "givenName": "K. V.", 
        "id": "sg:person.013446711732.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446711732.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1967-03", 
    "datePublishedReg": "1967-03-01", 
    "description": "Powder metallurgical nickel-alumina alloys prepared by the method of high-temperature sintering and then subjected to compressive deformation at room temperature exhibit a strength loss at the same annealing temperature as does pure nickel. However, the intensity of strength loss for the alloys is much lower than for pure nickel; the strength loss comes to an end at higher annealing temperatures, and after the completion of recrystallization the alloys retain a smaller grain size and a higher level of hardness.The extrusion of such alloys leads to the establishment of a structure which is even more stable at high annealing temperatures. The initial strength loss temperature of extruded alloys is 400\u2013500\u00b0C higher than that of nickel. A hardness which is twice as high as that of nickel is retained up to an annealing temperature of 1000\u20131100\u00b0C.In extruded alloys subjected to additional cold deformation, two strength loss maxima are clearly detected. The temperature of the first strength loss maximum coincides with the strength loss temperature of pure nickel, and is associated with the partial recrystallization of the nickel matrix regions situated between the aluminum oxide particles. The second maximum occurs at a temperature above 1000\u00b0C, and is due to the growing recrystallization nuclei rupturing the oxide particle barrier.The hardness of extruded alloys subjected to additional cold deformation and annealed at 600\u2013700\u00b0C or higher is less than the hardness of undeformed extruded alloys annealed at the same temperature, but is nevertheless much higher than the hardness of sintered unextruded alloys and of pure nickel.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00775668", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313787", 
        "issn": [
          "0032-4795", 
          "1068-1302"
        ], 
        "name": "Powder Metallurgy and Metal Ceramics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "extruded alloy", 
      "pure nickel", 
      "higher annealing temperatures", 
      "annealing temperature", 
      "cold deformation", 
      "strength loss", 
      "high-temperature sintering", 
      "completion of recrystallization", 
      "small grain size", 
      "such alloys", 
      "same annealing temperature", 
      "compressive deformation", 
      "alloy", 
      "particle barrier", 
      "aluminum oxide", 
      "loss temperatures", 
      "grain size", 
      "hardness", 
      "partial recrystallization", 
      "recrystallization nuclei", 
      "matrix region", 
      "deformation", 
      "nickel", 
      "recrystallization", 
      "temperature", 
      "room temperature", 
      "same temperature", 
      "sintering", 
      "loss maximum", 
      "annealing", 
      "maxima coincide", 
      "extrusion", 
      "oxide", 
      "second maximum", 
      "maximum", 
      "loss", 
      "structure", 
      "size", 
      "method", 
      "intensity", 
      "barriers", 
      "region", 
      "coincide", 
      "end", 
      "high levels", 
      "levels", 
      "completion", 
      "establishment", 
      "nucleus", 
      "Powder metallurgical nickel-alumina alloys", 
      "metallurgical nickel-alumina alloys", 
      "nickel-alumina alloys", 
      "initial strength loss temperature", 
      "strength loss temperature", 
      "additional cold deformation", 
      "strength loss maxima", 
      "first strength loss maximum coincides", 
      "strength loss maximum coincides", 
      "loss maximum coincides", 
      "nickel matrix regions", 
      "oxide particle barrier", 
      "unextruded alloys", 
      "deformed nickel-alumina alloys"
    ], 
    "name": "Strength loss during the annealing of deformed nickel-alumina alloys", 
    "pagination": "211-216", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026380462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00775668"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00775668", 
      "https://app.dimensions.ai/details/publication/pub.1026380462"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T17:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_100.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00775668"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00775668'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00775668'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00775668'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00775668'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      89 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00775668 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4314085ca7634c93a832b0dc1a83db39
4 schema:datePublished 1967-03
5 schema:datePublishedReg 1967-03-01
6 schema:description Powder metallurgical nickel-alumina alloys prepared by the method of high-temperature sintering and then subjected to compressive deformation at room temperature exhibit a strength loss at the same annealing temperature as does pure nickel. However, the intensity of strength loss for the alloys is much lower than for pure nickel; the strength loss comes to an end at higher annealing temperatures, and after the completion of recrystallization the alloys retain a smaller grain size and a higher level of hardness.The extrusion of such alloys leads to the establishment of a structure which is even more stable at high annealing temperatures. The initial strength loss temperature of extruded alloys is 400–500°C higher than that of nickel. A hardness which is twice as high as that of nickel is retained up to an annealing temperature of 1000–1100°C.In extruded alloys subjected to additional cold deformation, two strength loss maxima are clearly detected. The temperature of the first strength loss maximum coincides with the strength loss temperature of pure nickel, and is associated with the partial recrystallization of the nickel matrix regions situated between the aluminum oxide particles. The second maximum occurs at a temperature above 1000°C, and is due to the growing recrystallization nuclei rupturing the oxide particle barrier.The hardness of extruded alloys subjected to additional cold deformation and annealed at 600–700°C or higher is less than the hardness of undeformed extruded alloys annealed at the same temperature, but is nevertheless much higher than the hardness of sintered unextruded alloys and of pure nickel.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N84249a5e250b4fdf83d0eeed76c340c8
11 Nf5516490c06f4e6b845b08abbe0d8df6
12 sg:journal.1313787
13 schema:keywords Powder metallurgical nickel-alumina alloys
14 additional cold deformation
15 alloy
16 aluminum oxide
17 annealing
18 annealing temperature
19 barriers
20 coincide
21 cold deformation
22 completion
23 completion of recrystallization
24 compressive deformation
25 deformation
26 deformed nickel-alumina alloys
27 end
28 establishment
29 extruded alloy
30 extrusion
31 first strength loss maximum coincides
32 grain size
33 hardness
34 high levels
35 high-temperature sintering
36 higher annealing temperatures
37 initial strength loss temperature
38 intensity
39 levels
40 loss
41 loss maximum
42 loss maximum coincides
43 loss temperatures
44 matrix region
45 maxima coincide
46 maximum
47 metallurgical nickel-alumina alloys
48 method
49 nickel
50 nickel matrix regions
51 nickel-alumina alloys
52 nucleus
53 oxide
54 oxide particle barrier
55 partial recrystallization
56 particle barrier
57 pure nickel
58 recrystallization
59 recrystallization nuclei
60 region
61 room temperature
62 same annealing temperature
63 same temperature
64 second maximum
65 sintering
66 size
67 small grain size
68 strength loss
69 strength loss maxima
70 strength loss maximum coincides
71 strength loss temperature
72 structure
73 such alloys
74 temperature
75 unextruded alloys
76 schema:name Strength loss during the annealing of deformed nickel-alumina alloys
77 schema:pagination 211-216
78 schema:productId N44137f06b42844999f52073c851f5b31
79 N7e9055601b2143239b601f86a2db2ac1
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026380462
81 https://doi.org/10.1007/bf00775668
82 schema:sdDatePublished 2022-01-01T17:59
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Nfedbde7b3d734d7389e65d02caed0be1
85 schema:url https://doi.org/10.1007/bf00775668
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N35aae80333ba4895a0027b132fcf5d80 rdf:first sg:person.013446711732.13
90 rdf:rest rdf:nil
91 N4314085ca7634c93a832b0dc1a83db39 rdf:first sg:person.016342027024.77
92 rdf:rest Na8a20f419cb2427ba4feaa7fdddbd01d
93 N44137f06b42844999f52073c851f5b31 schema:name doi
94 schema:value 10.1007/bf00775668
95 rdf:type schema:PropertyValue
96 N7e9055601b2143239b601f86a2db2ac1 schema:name dimensions_id
97 schema:value pub.1026380462
98 rdf:type schema:PropertyValue
99 N84249a5e250b4fdf83d0eeed76c340c8 schema:volumeNumber 6
100 rdf:type schema:PublicationVolume
101 N8d30e3ba3d2d40b1887b37ec2d96153f rdf:first sg:person.013277447465.87
102 rdf:rest Ncdbefa3499c449dcb7d287a7cff74688
103 Na8a20f419cb2427ba4feaa7fdddbd01d rdf:first sg:person.015373075265.25
104 rdf:rest N8d30e3ba3d2d40b1887b37ec2d96153f
105 Ncdbefa3499c449dcb7d287a7cff74688 rdf:first sg:person.014217620624.46
106 rdf:rest N35aae80333ba4895a0027b132fcf5d80
107 Nf5516490c06f4e6b845b08abbe0d8df6 schema:issueNumber 3
108 rdf:type schema:PublicationIssue
109 Nfedbde7b3d734d7389e65d02caed0be1 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
112 schema:name Engineering
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
115 schema:name Materials Engineering
116 rdf:type schema:DefinedTerm
117 sg:journal.1313787 schema:issn 0032-4795
118 1068-1302
119 schema:name Powder Metallurgy and Metal Ceramics
120 schema:publisher Springer Nature
121 rdf:type schema:Periodical
122 sg:person.013277447465.87 schema:affiliation grid-institutes:None
123 schema:familyName Savitskii
124 schema:givenName A. P.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013277447465.87
126 rdf:type schema:Person
127 sg:person.013446711732.13 schema:affiliation grid-institutes:None
128 schema:familyName Savitskii
129 schema:givenName K. V.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446711732.13
131 rdf:type schema:Person
132 sg:person.014217620624.46 schema:affiliation grid-institutes:None
133 schema:familyName Grigor'eva
134 schema:givenName V. V.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014217620624.46
136 rdf:type schema:Person
137 sg:person.015373075265.25 schema:affiliation grid-institutes:None
138 schema:familyName Sergeenkova
139 schema:givenName V. M.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015373075265.25
141 rdf:type schema:Person
142 sg:person.016342027024.77 schema:affiliation grid-institutes:None
143 schema:familyName Kulikov
144 schema:givenName V. A.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342027024.77
146 rdf:type schema:Person
147 grid-institutes:None schema:alternateName V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute, USSR
148 schema:name V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute, USSR
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...