Parametric ranked set sampling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-09

AUTHORS

Lynne Stokes

ABSTRACT

Ranked set sampling was introduced by McIntyre (1952,Australian Journal of Agricultural Research,3, 385–390) as a cost-effective method of selecting data if observations are much more cheaply ranked than measured. He proposed its use for estimating the population mean when the distribution of the data was unknown. In this paper, we examine the advantage, if any, that this method of sampling has if the distribution is known, for a specific family of distributions. Specifically, we consider estimation of μ and σ for the family of random variables with cdf's of the formF(x−μ/σ). We find that the ranked set sample does provide more information about both μ and σ than a random sample of the same number of observations. We examine both maximum likelihood and best linear unbiased estimation of μ and σ, as well as methods for modifying the ranked set sampling procedure to provide even better estimation. More... »

PAGES

465-482

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00773396

DOI

http://dx.doi.org/10.1007/bf00773396

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086064729


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Department of Management Science and Information Systems, University of Texas at Austin, CBA 5.202, 78712-1175, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stokes", 
        "givenName": "Lynne", 
        "id": "sg:person.016600157417.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600157417.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1214/aoms/1177730881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004554527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02911622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014193360", 
          "https://doi.org/10.1007/bf02911622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02911622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014193360", 
          "https://doi.org/10.1007/bf02911622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/ar9520385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024491920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-842x.1976.tb00963.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027215700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/env.3170040404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044321043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1988.10478607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610927708827563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058331964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610929008830198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058334668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2530493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069975998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2556166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069991898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982998"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-09", 
    "datePublishedReg": "1995-09-01", 
    "description": "Ranked set sampling was introduced by McIntyre (1952,Australian Journal of Agricultural Research,3, 385\u2013390) as a cost-effective method of selecting data if observations are much more cheaply ranked than measured. He proposed its use for estimating the population mean when the distribution of the data was unknown. In this paper, we examine the advantage, if any, that this method of sampling has if the distribution is known, for a specific family of distributions. Specifically, we consider estimation of \u03bc and \u03c3 for the family of random variables with cdf's of the formF(x\u2212\u03bc/\u03c3). We find that the ranked set sample does provide more information about both \u03bc and \u03c3 than a random sample of the same number of observations. We examine both maximum likelihood and best linear unbiased estimation of \u03bc and \u03c3, as well as methods for modifying the ranked set sampling procedure to provide even better estimation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00773396", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041657", 
        "issn": [
          "0020-3157", 
          "1572-9052"
        ], 
        "name": "Annals of the Institute of Statistical Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Parametric ranked set sampling", 
    "pagination": "465-482", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ab090e61c71809d11b32a89f41b5d7b144220660e46c252c6dbc0c444716e3d5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00773396"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086064729"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00773396", 
      "https://app.dimensions.ai/details/publication/pub.1086064729"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00773396"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00773396'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00773396'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00773396'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00773396'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00773396 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N0c9b89d94dcb490daf106a75df3fa5bb
4 schema:citation sg:pub.10.1007/bf02911622
5 https://doi.org/10.1002/env.3170040404
6 https://doi.org/10.1071/ar9520385
7 https://doi.org/10.1080/01621459.1988.10478607
8 https://doi.org/10.1080/03610927708827563
9 https://doi.org/10.1080/03610929008830198
10 https://doi.org/10.1111/j.1467-842x.1976.tb00963.x
11 https://doi.org/10.1214/aoms/1177730881
12 https://doi.org/10.2307/2347546
13 https://doi.org/10.2307/2530493
14 https://doi.org/10.2307/2556166
15 schema:datePublished 1995-09
16 schema:datePublishedReg 1995-09-01
17 schema:description Ranked set sampling was introduced by McIntyre (1952,Australian Journal of Agricultural Research,3, 385–390) as a cost-effective method of selecting data if observations are much more cheaply ranked than measured. He proposed its use for estimating the population mean when the distribution of the data was unknown. In this paper, we examine the advantage, if any, that this method of sampling has if the distribution is known, for a specific family of distributions. Specifically, we consider estimation of μ and σ for the family of random variables with cdf's of the formF(x−μ/σ). We find that the ranked set sample does provide more information about both μ and σ than a random sample of the same number of observations. We examine both maximum likelihood and best linear unbiased estimation of μ and σ, as well as methods for modifying the ranked set sampling procedure to provide even better estimation.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N4cd68b9a31744029b34bea00ce0f95d9
22 Nc9da05d9fca84a4db9d3861b23ff1895
23 sg:journal.1041657
24 schema:name Parametric ranked set sampling
25 schema:pagination 465-482
26 schema:productId N17182389a9e248f1a284f3ca4fe54b15
27 N560c647f7d6145ac8237413146f8c9d6
28 Nfa3936e645e84d838fee5b72bef74595
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086064729
30 https://doi.org/10.1007/bf00773396
31 schema:sdDatePublished 2019-04-10T14:54
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N18b961408dd94148970d7b75d71903c8
34 schema:url http://link.springer.com/10.1007/BF00773396
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N0c9b89d94dcb490daf106a75df3fa5bb rdf:first sg:person.016600157417.24
39 rdf:rest rdf:nil
40 N17182389a9e248f1a284f3ca4fe54b15 schema:name dimensions_id
41 schema:value pub.1086064729
42 rdf:type schema:PropertyValue
43 N18b961408dd94148970d7b75d71903c8 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N4cd68b9a31744029b34bea00ce0f95d9 schema:volumeNumber 47
46 rdf:type schema:PublicationVolume
47 N560c647f7d6145ac8237413146f8c9d6 schema:name doi
48 schema:value 10.1007/bf00773396
49 rdf:type schema:PropertyValue
50 Nc9da05d9fca84a4db9d3861b23ff1895 schema:issueNumber 3
51 rdf:type schema:PublicationIssue
52 Nfa3936e645e84d838fee5b72bef74595 schema:name readcube_id
53 schema:value ab090e61c71809d11b32a89f41b5d7b144220660e46c252c6dbc0c444716e3d5
54 rdf:type schema:PropertyValue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
59 schema:name Statistics
60 rdf:type schema:DefinedTerm
61 sg:journal.1041657 schema:issn 0020-3157
62 1572-9052
63 schema:name Annals of the Institute of Statistical Mathematics
64 rdf:type schema:Periodical
65 sg:person.016600157417.24 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
66 schema:familyName Stokes
67 schema:givenName Lynne
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600157417.24
69 rdf:type schema:Person
70 sg:pub.10.1007/bf02911622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014193360
71 https://doi.org/10.1007/bf02911622
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1002/env.3170040404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044321043
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1071/ar9520385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024491920
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1080/01621459.1988.10478607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303584
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1080/03610927708827563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058331964
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1080/03610929008830198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058334668
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1111/j.1467-842x.1976.tb00963.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027215700
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1214/aoms/1177730881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004554527
86 rdf:type schema:CreativeWork
87 https://doi.org/10.2307/2347546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982998
88 rdf:type schema:CreativeWork
89 https://doi.org/10.2307/2530493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975998
90 rdf:type schema:CreativeWork
91 https://doi.org/10.2307/2556166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069991898
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
94 schema:name Department of Management Science and Information Systems, University of Texas at Austin, CBA 5.202, 78712-1175, Austin, TX, USA
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...