Gravitational waves and red shifts: A space experiment for testing relativistic gravity using multiple time-correlated radio signals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-02

AUTHORS

L. L. Smarr, R. F. C. Vessot, C. A. Lundquist, R. Decher, Tsvi Piran

ABSTRACT

We describe an experimental technique for detecting extremely low-frequency pulses of gravitational radiation (νGW ∼ 1–10 mHz) originating from collapsing supermassive objects (M ∼ 106−107m⊙) occurring anywhere in the universe. Our technique is the natural outgrowth of a previous gravitational space mission. The novelty of our approach is in placing a highly stable hydrogen maser onboard a deep-space probe that controls a transmitter sending signals to earth. The spacecraft also includes a doppler transponder operating in the conventional two-way mode. Doppler tracking using simultaneously acquired one- and two-way information both on the spacecraft and at the earth station provides four time-records of frequency fluctuations. A single gravitational disturbance manifests itself as a uniquely determined pulse sequence in the two or more data sets whose amplitudes and arrival times depend on a single parameter. The repetition of the signal and the noises in the data can be used in a filtering scheme to improve the amplitude sensitivity by a factor of about 6 in amplitude (36 in energy). We believe the most likely of these gravitational pulse events occurring frequently enough to be detected (more than once per year) will come from the formation of black holes in the cores of ordinary spiral galaxies. We propose a technologically feasible and realistic space mission, using the above technique, to measure two aspects of gravitation with the same experimental equipment. The spaceflight begins in a highly eccentric earth orbit to measure the gravitational red shift and the second-order doppler effects to an accuracy of 5 parts in 106; at this level significant new tests of nonmetric theories of gravity are possible. Later, the spacecraft is sent into a heliocentric orbit to distances beyond 6 AU to search for gravitational radiation. More... »

PAGES

129-163

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00762473

DOI

http://dx.doi.org/10.1007/bf00762473

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050723891


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard-Smithsonian Center for Astrophysics, 02138, Cambridge, Massachusetts", 
          "id": "http://www.grid.ac/institutes/grid.455754.2", 
          "name": [
            "Harvard-Smithsonian Center for Astrophysics, 02138, Cambridge, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smarr", 
        "givenName": "L. L.", 
        "id": "sg:person.01245776524.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245776524.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard-Smithsonian Center for Astrophysics, 02138, Cambridge, Massachusetts", 
          "id": "http://www.grid.ac/institutes/grid.455754.2", 
          "name": [
            "Harvard-Smithsonian Center for Astrophysics, 02138, Cambridge, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vessot", 
        "givenName": "R. F. C.", 
        "id": "sg:person.012324574516.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012324574516.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NASA Marshall Space Flight Center, 35812, Huntsville, Alabama", 
          "id": "http://www.grid.ac/institutes/grid.419091.4", 
          "name": [
            "NASA Marshall Space Flight Center, 35812, Huntsville, Alabama"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lundquist", 
        "givenName": "C. A.", 
        "id": "sg:person.014156130264.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014156130264.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NASA Marshall Space Flight Center, 35812, Huntsville, Alabama", 
          "id": "http://www.grid.ac/institutes/grid.419091.4", 
          "name": [
            "NASA Marshall Space Flight Center, 35812, Huntsville, Alabama"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Decher", 
        "givenName": "R.", 
        "id": "sg:person.011332122363.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011332122363.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Study, 08540, Princeton, New Jersey", 
          "id": "http://www.grid.ac/institutes/grid.78989.37", 
          "name": [
            "Racah Institute of Physics, The Hebrew University, Jerusalem, Israel", 
            "Institute for Advanced Study, 08540, Princeton, New Jersey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piran", 
        "givenName": "Tsvi", 
        "id": "sg:person.01205252515.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205252515.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00762449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052226123", 
          "https://doi.org/10.1007/bf00762449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/229547a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021641020", 
          "https://doi.org/10.1038/229547a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00653616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035570161", 
          "https://doi.org/10.1007/bf00653616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/227157a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036950297", 
          "https://doi.org/10.1038/227157a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/277437a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044409871", 
          "https://doi.org/10.1038/277437a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983-02", 
    "datePublishedReg": "1983-02-01", 
    "description": "We describe an experimental technique for detecting extremely low-frequency pulses of gravitational radiation (\u03bdGW \u223c 1\u201310 mHz) originating from collapsing supermassive objects (M \u223c 106\u2212107m\u2299) occurring anywhere in the universe. Our technique is the natural outgrowth of a previous gravitational space mission. The novelty of our approach is in placing a highly stable hydrogen maser onboard a deep-space probe that controls a transmitter sending signals to earth. The spacecraft also includes a doppler transponder operating in the conventional two-way mode. Doppler tracking using simultaneously acquired one- and two-way information both on the spacecraft and at the earth station provides four time-records of frequency fluctuations. A single gravitational disturbance manifests itself as a uniquely determined pulse sequence in the two or more data sets whose amplitudes and arrival times depend on a single parameter. The repetition of the signal and the noises in the data can be used in a filtering scheme to improve the amplitude sensitivity by a factor of about 6 in amplitude (36 in energy). We believe the most likely of these gravitational pulse events occurring frequently enough to be detected (more than once per year) will come from the formation of black holes in the cores of ordinary spiral galaxies. We propose a technologically feasible and realistic space mission, using the above technique, to measure two aspects of gravitation with the same experimental equipment. The spaceflight begins in a highly eccentric earth orbit to measure the gravitational red shift and the second-order doppler effects to an accuracy of 5 parts in 106; at this level significant new tests of nonmetric theories of gravity are possible. Later, the spacecraft is sent into a heliocentric orbit to distances beyond 6 AU to search for gravitational radiation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00762473", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052061", 
        "issn": [
          "0001-7701", 
          "1572-9532"
        ], 
        "name": "General Relativity and Gravitation", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "gravitational radiation", 
      "red shift", 
      "second-order Doppler effect", 
      "eccentric Earth orbits", 
      "space missions", 
      "gravitational red shift", 
      "ordinary spiral galaxies", 
      "deep space probes", 
      "supermassive objects", 
      "spiral galaxies", 
      "relativistic gravity", 
      "gravitational waves", 
      "low-frequency pulses", 
      "nonmetric theories", 
      "hydrogen maser", 
      "black holes", 
      "space experiments", 
      "Doppler tracking", 
      "amplitude sensitivity", 
      "gravitational disturbances", 
      "heliocentric orbits", 
      "Earth orbit", 
      "Doppler effect", 
      "experimental techniques", 
      "spacecraft", 
      "radio signals", 
      "pulse sequence", 
      "frequency fluctuations", 
      "same experimental equipment", 
      "two-way mode", 
      "radiation", 
      "orbit", 
      "experimental equipment", 
      "galaxies", 
      "pulse events", 
      "gravity", 
      "filtering scheme", 
      "masers", 
      "universe", 
      "pulses", 
      "arrival time", 
      "gravitation", 
      "amplitude", 
      "single parameter", 
      "mission", 
      "holes", 
      "two-way information", 
      "Au", 
      "more data sets", 
      "shift", 
      "waves", 
      "signals", 
      "above techniques", 
      "Earth", 
      "probe", 
      "fluctuations", 
      "technique", 
      "earth stations", 
      "mode", 
      "data sets", 
      "distance", 
      "natural outgrowth", 
      "theory", 
      "noise", 
      "objects", 
      "core", 
      "experiments", 
      "scheme", 
      "transmitter", 
      "new test", 
      "parameters", 
      "tracking", 
      "formation", 
      "transponders", 
      "sensitivity", 
      "set", 
      "accuracy", 
      "disturbances", 
      "novelty", 
      "approach", 
      "effect", 
      "time", 
      "stations", 
      "spaceflight", 
      "data", 
      "information", 
      "sequence", 
      "part", 
      "equipment", 
      "events", 
      "aspects", 
      "factors", 
      "test", 
      "repetition", 
      "outgrowth"
    ], 
    "name": "Gravitational waves and red shifts: A space experiment for testing relativistic gravity using multiple time-correlated radio signals", 
    "pagination": "129-163", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050723891"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00762473"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00762473", 
      "https://app.dimensions.ai/details/publication/pub.1050723891"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_167.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00762473"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00762473'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00762473'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00762473'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00762473'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      125 URIs      112 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00762473 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N9f196158c11e4d57997d272c6bc83d88
4 schema:citation sg:pub.10.1007/bf00653616
5 sg:pub.10.1007/bf00762449
6 sg:pub.10.1038/227157a0
7 sg:pub.10.1038/229547a0
8 sg:pub.10.1038/277437a0
9 schema:datePublished 1983-02
10 schema:datePublishedReg 1983-02-01
11 schema:description We describe an experimental technique for detecting extremely low-frequency pulses of gravitational radiation (νGW ∼ 1–10 mHz) originating from collapsing supermassive objects (M ∼ 106−107m⊙) occurring anywhere in the universe. Our technique is the natural outgrowth of a previous gravitational space mission. The novelty of our approach is in placing a highly stable hydrogen maser onboard a deep-space probe that controls a transmitter sending signals to earth. The spacecraft also includes a doppler transponder operating in the conventional two-way mode. Doppler tracking using simultaneously acquired one- and two-way information both on the spacecraft and at the earth station provides four time-records of frequency fluctuations. A single gravitational disturbance manifests itself as a uniquely determined pulse sequence in the two or more data sets whose amplitudes and arrival times depend on a single parameter. The repetition of the signal and the noises in the data can be used in a filtering scheme to improve the amplitude sensitivity by a factor of about 6 in amplitude (36 in energy). We believe the most likely of these gravitational pulse events occurring frequently enough to be detected (more than once per year) will come from the formation of black holes in the cores of ordinary spiral galaxies. We propose a technologically feasible and realistic space mission, using the above technique, to measure two aspects of gravitation with the same experimental equipment. The spaceflight begins in a highly eccentric earth orbit to measure the gravitational red shift and the second-order doppler effects to an accuracy of 5 parts in 106; at this level significant new tests of nonmetric theories of gravity are possible. Later, the spacecraft is sent into a heliocentric orbit to distances beyond 6 AU to search for gravitational radiation.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N461b2b7f1ec647caa9b71b3ed01e3785
15 N8c8a8710f33c45a28c39d7ac19cdaa2c
16 sg:journal.1052061
17 schema:keywords Au
18 Doppler effect
19 Doppler tracking
20 Earth
21 Earth orbit
22 above techniques
23 accuracy
24 amplitude
25 amplitude sensitivity
26 approach
27 arrival time
28 aspects
29 black holes
30 core
31 data
32 data sets
33 deep space probes
34 distance
35 disturbances
36 earth stations
37 eccentric Earth orbits
38 effect
39 equipment
40 events
41 experimental equipment
42 experimental techniques
43 experiments
44 factors
45 filtering scheme
46 fluctuations
47 formation
48 frequency fluctuations
49 galaxies
50 gravitation
51 gravitational disturbances
52 gravitational radiation
53 gravitational red shift
54 gravitational waves
55 gravity
56 heliocentric orbits
57 holes
58 hydrogen maser
59 information
60 low-frequency pulses
61 masers
62 mission
63 mode
64 more data sets
65 natural outgrowth
66 new test
67 noise
68 nonmetric theories
69 novelty
70 objects
71 orbit
72 ordinary spiral galaxies
73 outgrowth
74 parameters
75 part
76 probe
77 pulse events
78 pulse sequence
79 pulses
80 radiation
81 radio signals
82 red shift
83 relativistic gravity
84 repetition
85 same experimental equipment
86 scheme
87 second-order Doppler effect
88 sensitivity
89 sequence
90 set
91 shift
92 signals
93 single parameter
94 space experiments
95 space missions
96 spacecraft
97 spaceflight
98 spiral galaxies
99 stations
100 supermassive objects
101 technique
102 test
103 theory
104 time
105 tracking
106 transmitter
107 transponders
108 two-way information
109 two-way mode
110 universe
111 waves
112 schema:name Gravitational waves and red shifts: A space experiment for testing relativistic gravity using multiple time-correlated radio signals
113 schema:pagination 129-163
114 schema:productId Naa3db3070a9b441d9860c39262549e87
115 Nc702187af4c24740972cbddeae42a220
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050723891
117 https://doi.org/10.1007/bf00762473
118 schema:sdDatePublished 2022-11-24T20:45
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher Neffdd41cde9447f2bbf4c430432a4772
121 schema:url https://doi.org/10.1007/bf00762473
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N41ec6f14955d4087b9b25c33c2fe713e rdf:first sg:person.014156130264.57
126 rdf:rest Nf47ae37db0154926b65879f05d247bca
127 N461b2b7f1ec647caa9b71b3ed01e3785 schema:issueNumber 2
128 rdf:type schema:PublicationIssue
129 N8c8a8710f33c45a28c39d7ac19cdaa2c schema:volumeNumber 15
130 rdf:type schema:PublicationVolume
131 N9f196158c11e4d57997d272c6bc83d88 rdf:first sg:person.01245776524.74
132 rdf:rest Nb5879248d95b497e927e12c3a8bb4bb1
133 Naa3db3070a9b441d9860c39262549e87 schema:name dimensions_id
134 schema:value pub.1050723891
135 rdf:type schema:PropertyValue
136 Nb5879248d95b497e927e12c3a8bb4bb1 rdf:first sg:person.012324574516.20
137 rdf:rest N41ec6f14955d4087b9b25c33c2fe713e
138 Nc702187af4c24740972cbddeae42a220 schema:name doi
139 schema:value 10.1007/bf00762473
140 rdf:type schema:PropertyValue
141 Ne98ee0cf4a164743854c888e06a1d8e5 rdf:first sg:person.01205252515.08
142 rdf:rest rdf:nil
143 Neffdd41cde9447f2bbf4c430432a4772 schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 Nf47ae37db0154926b65879f05d247bca rdf:first sg:person.011332122363.91
146 rdf:rest Ne98ee0cf4a164743854c888e06a1d8e5
147 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
148 schema:name Physical Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
151 schema:name Astronomical and Space Sciences
152 rdf:type schema:DefinedTerm
153 sg:journal.1052061 schema:issn 0001-7701
154 1572-9532
155 schema:name General Relativity and Gravitation
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.011332122363.91 schema:affiliation grid-institutes:grid.419091.4
159 schema:familyName Decher
160 schema:givenName R.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011332122363.91
162 rdf:type schema:Person
163 sg:person.01205252515.08 schema:affiliation grid-institutes:grid.78989.37
164 schema:familyName Piran
165 schema:givenName Tsvi
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205252515.08
167 rdf:type schema:Person
168 sg:person.012324574516.20 schema:affiliation grid-institutes:grid.455754.2
169 schema:familyName Vessot
170 schema:givenName R. F. C.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012324574516.20
172 rdf:type schema:Person
173 sg:person.01245776524.74 schema:affiliation grid-institutes:grid.455754.2
174 schema:familyName Smarr
175 schema:givenName L. L.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245776524.74
177 rdf:type schema:Person
178 sg:person.014156130264.57 schema:affiliation grid-institutes:grid.419091.4
179 schema:familyName Lundquist
180 schema:givenName C. A.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014156130264.57
182 rdf:type schema:Person
183 sg:pub.10.1007/bf00653616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035570161
184 https://doi.org/10.1007/bf00653616
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/bf00762449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052226123
187 https://doi.org/10.1007/bf00762449
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/227157a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036950297
190 https://doi.org/10.1038/227157a0
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/229547a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021641020
193 https://doi.org/10.1038/229547a0
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/277437a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044409871
196 https://doi.org/10.1038/277437a0
197 rdf:type schema:CreativeWork
198 grid-institutes:grid.419091.4 schema:alternateName NASA Marshall Space Flight Center, 35812, Huntsville, Alabama
199 schema:name NASA Marshall Space Flight Center, 35812, Huntsville, Alabama
200 rdf:type schema:Organization
201 grid-institutes:grid.455754.2 schema:alternateName Harvard-Smithsonian Center for Astrophysics, 02138, Cambridge, Massachusetts
202 schema:name Harvard-Smithsonian Center for Astrophysics, 02138, Cambridge, Massachusetts
203 rdf:type schema:Organization
204 grid-institutes:grid.78989.37 schema:alternateName Institute for Advanced Study, 08540, Princeton, New Jersey
205 schema:name Institute for Advanced Study, 08540, Princeton, New Jersey
206 Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...