Classical gravity with higher derivatives View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1978-04

AUTHORS

K. S. Stelle

ABSTRACT

Inclusion of the four-derivative terms ∫RμνRμν(−g)1/2 and ∫R2(−g)1/2 into the gravitational action gives a class of effectively multimass models of gravity. In addition to the usual massless excitations of the field, there are now, for general amounts of the two new terms, massive spin-two and massive scalar excitations, with a total of eight degrees of freedom. The massive spin-two part of the field has negative energy. Specific ratios of the two new terms give models with either the massive tensor or the massive scalar missing, with correspondingly fewer degrees of freedom. The static, linearized solutions of the field equations are combinations of Newtonian and Yukawa potentials. Owing to the Yukawa form of the corrections, observational evidence sets only very weak restrictions on the new masses. The acceptable static metric solutions in the full nonlinear theory are regular at the origin. The dynamical content of the linearized field is analyzed by reducing the fourth-order field equations to separated second-order equations, related by coupling to external sources in a fixed ratio. This analysis is carried out into the various helicity components using the transverse-traceless decomposition of the metric. More... »

PAGES

353-371

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00760427

DOI

http://dx.doi.org/10.1007/bf00760427

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049262530


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Physics, Brandeis University, 02154, Waltham, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stelle", 
        "givenName": "K. S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-0-12-780580-1.50016-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001290530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02734585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002832484", 
          "https://doi.org/10.1007/bf02734585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00759198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003793874", 
          "https://doi.org/10.1007/bf00759198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00759198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003793874", 
          "https://doi.org/10.1007/bf00759198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(75)90051-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019160139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(75)90051-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019160139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-02044-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026043864", 
          "https://doi.org/10.1007/978-3-662-02044-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-02044-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026043864", 
          "https://doi.org/10.1007/978-3-662-02044-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/260417a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028191780", 
          "https://doi.org/10.1038/260417a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01773351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033789370", 
          "https://doi.org/10.1007/bf01773351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01773351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033789370", 
          "https://doi.org/10.1007/bf01773351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(69)90098-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049783999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(69)90098-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049783999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100025068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053838207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1724264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057791138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.79.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.79.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060456427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.16.953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060685489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.16.953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060685489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069673896"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1978-04", 
    "datePublishedReg": "1978-04-01", 
    "description": "Inclusion of the four-derivative terms \u222bR\u03bc\u03bdR\u03bc\u03bd(\u2212g)1/2 and \u222bR2(\u2212g)1/2 into the gravitational action gives a class of effectively multimass models of gravity. In addition to the usual massless excitations of the field, there are now, for general amounts of the two new terms, massive spin-two and massive scalar excitations, with a total of eight degrees of freedom. The massive spin-two part of the field has negative energy. Specific ratios of the two new terms give models with either the massive tensor or the massive scalar missing, with correspondingly fewer degrees of freedom. The static, linearized solutions of the field equations are combinations of Newtonian and Yukawa potentials. Owing to the Yukawa form of the corrections, observational evidence sets only very weak restrictions on the new masses. The acceptable static metric solutions in the full nonlinear theory are regular at the origin. The dynamical content of the linearized field is analyzed by reducing the fourth-order field equations to separated second-order equations, related by coupling to external sources in a fixed ratio. This analysis is carried out into the various helicity components using the transverse-traceless decomposition of the metric.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00760427", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052061", 
        "issn": [
          "0001-7701", 
          "1572-9532"
        ], 
        "name": "General Relativity and Gravitation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Classical gravity with higher derivatives", 
    "pagination": "353-371", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eaad806bb16051a21f954f1b17260006c521cd85643365f8158adc8218d7b3b7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00760427"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049262530"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00760427", 
      "https://app.dimensions.ai/details/publication/pub.1049262530"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117100_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00760427"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00760427'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00760427'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00760427'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00760427'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00760427 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na8e88a6c47194444af8ec2fab0803cfd
4 schema:citation sg:pub.10.1007/978-3-662-02044-9
5 sg:pub.10.1007/bf00759198
6 sg:pub.10.1007/bf01773351
7 sg:pub.10.1007/bf02734585
8 sg:pub.10.1038/260417a0
9 https://doi.org/10.1016/0370-1573(75)90051-4
10 https://doi.org/10.1016/0550-3213(69)90098-4
11 https://doi.org/10.1016/b978-0-12-780580-1.50016-4
12 https://doi.org/10.1017/s0305004100025068
13 https://doi.org/10.1063/1.1724264
14 https://doi.org/10.1103/physrev.79.145
15 https://doi.org/10.1103/physrevd.16.953
16 https://doi.org/10.2307/1968467
17 schema:datePublished 1978-04
18 schema:datePublishedReg 1978-04-01
19 schema:description Inclusion of the four-derivative terms ∫RμνRμν(−g)1/2 and ∫R2(−g)1/2 into the gravitational action gives a class of effectively multimass models of gravity. In addition to the usual massless excitations of the field, there are now, for general amounts of the two new terms, massive spin-two and massive scalar excitations, with a total of eight degrees of freedom. The massive spin-two part of the field has negative energy. Specific ratios of the two new terms give models with either the massive tensor or the massive scalar missing, with correspondingly fewer degrees of freedom. The static, linearized solutions of the field equations are combinations of Newtonian and Yukawa potentials. Owing to the Yukawa form of the corrections, observational evidence sets only very weak restrictions on the new masses. The acceptable static metric solutions in the full nonlinear theory are regular at the origin. The dynamical content of the linearized field is analyzed by reducing the fourth-order field equations to separated second-order equations, related by coupling to external sources in a fixed ratio. This analysis is carried out into the various helicity components using the transverse-traceless decomposition of the metric.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N99cf93b719ae49b6bce88f0948e25ebc
24 Nc2c2f7325a5a489985792d719bdaa4bb
25 sg:journal.1052061
26 schema:name Classical gravity with higher derivatives
27 schema:pagination 353-371
28 schema:productId N15029b0691e84d8c822e2d560bdff563
29 N7483ad746e5b4d95809e3f0055c867ce
30 Ne84f2ea704ec401399127819b47a58f3
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049262530
32 https://doi.org/10.1007/bf00760427
33 schema:sdDatePublished 2019-04-11T14:18
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nca77f799adfe469aad3df18d0ba012b0
36 schema:url http://link.springer.com/10.1007/BF00760427
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N15029b0691e84d8c822e2d560bdff563 schema:name readcube_id
41 schema:value eaad806bb16051a21f954f1b17260006c521cd85643365f8158adc8218d7b3b7
42 rdf:type schema:PropertyValue
43 N48fc28872456449b89e63945d6a29d6b schema:name Department of Physics, Brandeis University, 02154, Waltham, Massachusetts
44 rdf:type schema:Organization
45 N63b48d8572cb46bbbc89cbe8bf51f0b4 schema:affiliation N48fc28872456449b89e63945d6a29d6b
46 schema:familyName Stelle
47 schema:givenName K. S.
48 rdf:type schema:Person
49 N7483ad746e5b4d95809e3f0055c867ce schema:name dimensions_id
50 schema:value pub.1049262530
51 rdf:type schema:PropertyValue
52 N99cf93b719ae49b6bce88f0948e25ebc schema:issueNumber 4
53 rdf:type schema:PublicationIssue
54 Na8e88a6c47194444af8ec2fab0803cfd rdf:first N63b48d8572cb46bbbc89cbe8bf51f0b4
55 rdf:rest rdf:nil
56 Nc2c2f7325a5a489985792d719bdaa4bb schema:volumeNumber 9
57 rdf:type schema:PublicationVolume
58 Nca77f799adfe469aad3df18d0ba012b0 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Ne84f2ea704ec401399127819b47a58f3 schema:name doi
61 schema:value 10.1007/bf00760427
62 rdf:type schema:PropertyValue
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1052061 schema:issn 0001-7701
70 1572-9532
71 schema:name General Relativity and Gravitation
72 rdf:type schema:Periodical
73 sg:pub.10.1007/978-3-662-02044-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026043864
74 https://doi.org/10.1007/978-3-662-02044-9
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf00759198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003793874
77 https://doi.org/10.1007/bf00759198
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01773351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033789370
80 https://doi.org/10.1007/bf01773351
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf02734585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002832484
83 https://doi.org/10.1007/bf02734585
84 rdf:type schema:CreativeWork
85 sg:pub.10.1038/260417a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028191780
86 https://doi.org/10.1038/260417a0
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0370-1573(75)90051-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019160139
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0550-3213(69)90098-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049783999
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/b978-0-12-780580-1.50016-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001290530
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1017/s0305004100025068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053838207
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1063/1.1724264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057791138
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrev.79.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060456427
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevd.16.953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060685489
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2307/1968467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673896
103 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...