Spin wave and attenuation of liquid explosive detonation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-03

AUTHORS

G. D. Kozak, B. N. Kondrikov, V. B. Oblomskii

ABSTRACT

The detonation of nitromethane and a dinitrotoluene solution in bistrinitroxyethylnitramine when the diameter of the cylindrical charge is close to the critical was investigated with the aid of high-speed photography of the luminosity of the lateral and end cylinder surfaces and the recording of the spin wave surface using sampling plates with an air gap. It was discovered that the appearance of penetrating spinning absence-of-reaction waves, which are responsible for the attenuation of liquid explosive detonation, is closely related to the spread of detonation spin waves over the charge surface (or immediately below it). The spin waves, which are instrumental in the propagation of a normal detonation in weakly heterogeneous cast charges consisting of trotyl-hexogene and trotyl-PETN, in the case of liquid explosives probably inhibit the detonation process by inducing the formation of penetrating absence-of-reaction spin waves. It is shown that the spin wave velocity corresponds to the degree of material compression in the near-surface layer, as calculated according to the Dremin-Trofimov model (it can be only slightly above it.) More... »

PAGES

195-199

References to SciGraph publications

  • 1987-01. Equation of state for gases at high pressure in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1956-07. Detonation Phenomena in Homogeneous Explosives in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00754860

    DOI

    http://dx.doi.org/10.1007/bf00754860

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020528068


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Kozak", 
            "givenName": "G. D.", 
            "id": "sg:person.011343347345.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011343347345.63"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Kondrikov", 
            "givenName": "B. N.", 
            "id": "sg:person.014445513373.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014445513373.64"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Oblomskii", 
            "givenName": "V. B.", 
            "id": "sg:person.012341707265.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012341707265.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/178038a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001084305", 
              "https://doi.org/10.1038/178038a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00755649", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041942086", 
              "https://doi.org/10.1007/bf00755649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00755649", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041942086", 
              "https://doi.org/10.1007/bf00755649"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-03", 
        "datePublishedReg": "1992-03-01", 
        "description": "The detonation of nitromethane and a dinitrotoluene solution in bistrinitroxyethylnitramine when the diameter of the cylindrical charge is close to the critical was investigated with the aid of high-speed photography of the luminosity of the lateral and end cylinder surfaces and the recording of the spin wave surface using sampling plates with an air gap. It was discovered that the appearance of penetrating spinning absence-of-reaction waves, which are responsible for the attenuation of liquid explosive detonation, is closely related to the spread of detonation spin waves over the charge surface (or immediately below it). The spin waves, which are instrumental in the propagation of a normal detonation in weakly heterogeneous cast charges consisting of trotyl-hexogene and trotyl-PETN, in the case of liquid explosives probably inhibit the detonation process by inducing the formation of penetrating absence-of-reaction spin waves. It is shown that the spin wave velocity corresponds to the degree of material compression in the near-surface layer, as calculated according to the Dremin-Trofimov model (it can be only slightly above it.)", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00754860", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049027", 
            "issn": [
              "0010-5082", 
              "1573-8345"
            ], 
            "name": "Combustion, Explosion, and Shock Waves", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "Spin wave and attenuation of liquid explosive detonation", 
        "pagination": "195-199", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "61d00fcf6ebf3e167f4227c4a2805620d6d7f113b98a2b3091c61a639e6fe724"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00754860"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020528068"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00754860", 
          "https://app.dimensions.ai/details/publication/pub.1020528068"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117091_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00754860"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00754860'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00754860'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00754860'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00754860'


     

    This table displays all metadata directly associated to this object as RDF triples.

    77 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00754860 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N8c32017d98e7479685624d45d9f7fde2
    4 schema:citation sg:pub.10.1007/bf00755649
    5 sg:pub.10.1038/178038a0
    6 schema:datePublished 1992-03
    7 schema:datePublishedReg 1992-03-01
    8 schema:description The detonation of nitromethane and a dinitrotoluene solution in bistrinitroxyethylnitramine when the diameter of the cylindrical charge is close to the critical was investigated with the aid of high-speed photography of the luminosity of the lateral and end cylinder surfaces and the recording of the spin wave surface using sampling plates with an air gap. It was discovered that the appearance of penetrating spinning absence-of-reaction waves, which are responsible for the attenuation of liquid explosive detonation, is closely related to the spread of detonation spin waves over the charge surface (or immediately below it). The spin waves, which are instrumental in the propagation of a normal detonation in weakly heterogeneous cast charges consisting of trotyl-hexogene and trotyl-PETN, in the case of liquid explosives probably inhibit the detonation process by inducing the formation of penetrating absence-of-reaction spin waves. It is shown that the spin wave velocity corresponds to the degree of material compression in the near-surface layer, as calculated according to the Dremin-Trofimov model (it can be only slightly above it.)
    9 schema:genre research_article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N244b215cde1445ff9440084af2c4695c
    13 N69a969ab2d5b4017b53f11211531636c
    14 sg:journal.1049027
    15 schema:name Spin wave and attenuation of liquid explosive detonation
    16 schema:pagination 195-199
    17 schema:productId N7c05b634d10843bfbee20fb4ef8d919f
    18 Nc716f528694241f0b46cac40e47647b6
    19 Ncda9adceb63548c2b6374839d34dccc8
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020528068
    21 https://doi.org/10.1007/bf00754860
    22 schema:sdDatePublished 2019-04-11T14:16
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N63a610d65de44d86adb972fa1e4cb1d2
    25 schema:url http://link.springer.com/10.1007/BF00754860
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N244b215cde1445ff9440084af2c4695c schema:issueNumber 2
    30 rdf:type schema:PublicationIssue
    31 N3c68cbdd439a4b879ab2bda036f0e3fd rdf:first sg:person.012341707265.67
    32 rdf:rest rdf:nil
    33 N63a610d65de44d86adb972fa1e4cb1d2 schema:name Springer Nature - SN SciGraph project
    34 rdf:type schema:Organization
    35 N69a969ab2d5b4017b53f11211531636c schema:volumeNumber 28
    36 rdf:type schema:PublicationVolume
    37 N7c05b634d10843bfbee20fb4ef8d919f schema:name readcube_id
    38 schema:value 61d00fcf6ebf3e167f4227c4a2805620d6d7f113b98a2b3091c61a639e6fe724
    39 rdf:type schema:PropertyValue
    40 N8c32017d98e7479685624d45d9f7fde2 rdf:first sg:person.011343347345.63
    41 rdf:rest Nf98a78c5d1bc426cb45e1bcb071f8aae
    42 Nc716f528694241f0b46cac40e47647b6 schema:name doi
    43 schema:value 10.1007/bf00754860
    44 rdf:type schema:PropertyValue
    45 Ncda9adceb63548c2b6374839d34dccc8 schema:name dimensions_id
    46 schema:value pub.1020528068
    47 rdf:type schema:PropertyValue
    48 Nf98a78c5d1bc426cb45e1bcb071f8aae rdf:first sg:person.014445513373.64
    49 rdf:rest N3c68cbdd439a4b879ab2bda036f0e3fd
    50 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Engineering
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Materials Engineering
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1049027 schema:issn 0010-5082
    57 1573-8345
    58 schema:name Combustion, Explosion, and Shock Waves
    59 rdf:type schema:Periodical
    60 sg:person.011343347345.63 schema:familyName Kozak
    61 schema:givenName G. D.
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011343347345.63
    63 rdf:type schema:Person
    64 sg:person.012341707265.67 schema:familyName Oblomskii
    65 schema:givenName V. B.
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012341707265.67
    67 rdf:type schema:Person
    68 sg:person.014445513373.64 schema:familyName Kondrikov
    69 schema:givenName B. N.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014445513373.64
    71 rdf:type schema:Person
    72 sg:pub.10.1007/bf00755649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041942086
    73 https://doi.org/10.1007/bf00755649
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1038/178038a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001084305
    76 https://doi.org/10.1038/178038a0
    77 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...