Supercurrents and hydrodynamic modes in3He-A1 in an electric field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-05

AUTHORS

Yu. G. Makhlin

ABSTRACT

We consider the supercurrent in superfluid3He in an electric field. The possibility to generate hydrodynamic modes (first and second sound) in theA1-phase by an oscillating, electric field is proposed. It is shown that the resonance technique can amplify the small amplitude of the second-sound wave. The possibility of measurement is also discussed. More... »

PAGES

497-506

References to SciGraph publications

  • 1992-12. Electric dipole moment and spin supercurrent in superfluid3He in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 1975-11. Textures and spin currents in the B phase of3He in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 1980-09. Three fluid hydrodynamics of superfluid3He in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00751785

    DOI

    http://dx.doi.org/10.1007/bf00751785

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040976891


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Landau Institute for Theoretical Physics", 
              "id": "https://www.grid.ac/institutes/grid.436090.8", 
              "name": [
                "Landau Institute for Theoretical Physics GSP-1, Kosygina Street, 117940, Moscow V-994, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Makhlin", 
            "givenName": "Yu. G.", 
            "id": "sg:person.015411254173.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015411254173.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00683888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001634216", 
              "https://doi.org/10.1007/bf00683888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00683888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001634216", 
              "https://doi.org/10.1007/bf00683888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.1678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003120308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.1678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003120308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01294525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009302325", 
              "https://doi.org/10.1007/bf01294525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01294525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009302325", 
              "https://doi.org/10.1007/bf01294525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9601(78)90100-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012441333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9601(78)90100-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012441333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01141327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030739841", 
              "https://doi.org/10.1007/bf01141327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01141327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030739841", 
              "https://doi.org/10.1007/bf01141327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1684354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057760009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.27.5534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060532494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.27.5534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060532494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.27.588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060532557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.27.588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060532557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.29.2833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060534202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.29.2833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060534202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.44.1337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060784762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.44.1337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060784762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.45.2029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060785554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.45.2029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060785554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.48.1842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060787228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.48.1842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060787228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.55.1677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060792146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.55.1677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060792146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.55.2704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060792480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.55.2704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060792480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.47.415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.47.415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3367/ufnr.0139.198302d.0303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071217288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/b12808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109619387"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-05", 
        "datePublishedReg": "1994-05-01", 
        "description": "We consider the supercurrent in superfluid3He in an electric field. The possibility to generate hydrodynamic modes (first and second sound) in theA1-phase by an oscillating, electric field is proposed. It is shown that the resonance technique can amplify the small amplitude of the second-sound wave. The possibility of measurement is also discussed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00751785", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1030474", 
            "issn": [
              "0022-2291", 
              "1573-7357"
            ], 
            "name": "Journal of Low Temperature Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "95"
          }
        ], 
        "name": "Supercurrents and hydrodynamic modes in3He-A1 in an electric field", 
        "pagination": "497-506", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c3337ae71d5b3cc1b0954d11dd9fb6e12d6f113b25ae3b60677d930c0863ec6b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00751785"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040976891"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00751785", 
          "https://app.dimensions.ai/details/publication/pub.1040976891"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117097_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FBF00751785"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00751785'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00751785'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00751785'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00751785'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00751785 schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 schema:author N6dfc672a17764ed9944ee2c20e8d0822
    4 schema:citation sg:pub.10.1007/bf00683888
    5 sg:pub.10.1007/bf01141327
    6 sg:pub.10.1007/bf01294525
    7 https://doi.org/10.1016/0375-9601(78)90100-7
    8 https://doi.org/10.1063/1.1684354
    9 https://doi.org/10.1103/physrevb.27.5534
    10 https://doi.org/10.1103/physrevb.27.588
    11 https://doi.org/10.1103/physrevb.29.2833
    12 https://doi.org/10.1103/physrevlett.44.1337
    13 https://doi.org/10.1103/physrevlett.45.2029
    14 https://doi.org/10.1103/physrevlett.48.1842
    15 https://doi.org/10.1103/physrevlett.55.1677
    16 https://doi.org/10.1103/physrevlett.55.2704
    17 https://doi.org/10.1103/physrevlett.70.1678
    18 https://doi.org/10.1103/revmodphys.47.415
    19 https://doi.org/10.1201/b12808
    20 https://doi.org/10.3367/ufnr.0139.198302d.0303
    21 schema:datePublished 1994-05
    22 schema:datePublishedReg 1994-05-01
    23 schema:description We consider the supercurrent in superfluid3He in an electric field. The possibility to generate hydrodynamic modes (first and second sound) in theA1-phase by an oscillating, electric field is proposed. It is shown that the resonance technique can amplify the small amplitude of the second-sound wave. The possibility of measurement is also discussed.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N7c4ce071a1b74c7c88e651fe8a1089b7
    28 Nfb3eecf99a664854ba8b2f2180b7a054
    29 sg:journal.1030474
    30 schema:name Supercurrents and hydrodynamic modes in3He-A1 in an electric field
    31 schema:pagination 497-506
    32 schema:productId N2ccd74ffe2be48eaa6d3ecc591684605
    33 N41b1e2fc8cdd4ba298793a9703050596
    34 N53451d51a0814275a80c1db21bd92535
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040976891
    36 https://doi.org/10.1007/bf00751785
    37 schema:sdDatePublished 2019-04-11T14:17
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher Nc6888d00181242e8a72ab1228c7fd17e
    40 schema:url http://link.springer.com/10.1007%2FBF00751785
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N2ccd74ffe2be48eaa6d3ecc591684605 schema:name doi
    45 schema:value 10.1007/bf00751785
    46 rdf:type schema:PropertyValue
    47 N41b1e2fc8cdd4ba298793a9703050596 schema:name dimensions_id
    48 schema:value pub.1040976891
    49 rdf:type schema:PropertyValue
    50 N53451d51a0814275a80c1db21bd92535 schema:name readcube_id
    51 schema:value c3337ae71d5b3cc1b0954d11dd9fb6e12d6f113b25ae3b60677d930c0863ec6b
    52 rdf:type schema:PropertyValue
    53 N6dfc672a17764ed9944ee2c20e8d0822 rdf:first sg:person.015411254173.50
    54 rdf:rest rdf:nil
    55 N7c4ce071a1b74c7c88e651fe8a1089b7 schema:issueNumber 3-4
    56 rdf:type schema:PublicationIssue
    57 Nc6888d00181242e8a72ab1228c7fd17e schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 Nfb3eecf99a664854ba8b2f2180b7a054 schema:volumeNumber 95
    60 rdf:type schema:PublicationVolume
    61 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Engineering
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Electrical and Electronic Engineering
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1030474 schema:issn 0022-2291
    68 1573-7357
    69 schema:name Journal of Low Temperature Physics
    70 rdf:type schema:Periodical
    71 sg:person.015411254173.50 schema:affiliation https://www.grid.ac/institutes/grid.436090.8
    72 schema:familyName Makhlin
    73 schema:givenName Yu. G.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015411254173.50
    75 rdf:type schema:Person
    76 sg:pub.10.1007/bf00683888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001634216
    77 https://doi.org/10.1007/bf00683888
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf01141327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030739841
    80 https://doi.org/10.1007/bf01141327
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf01294525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009302325
    83 https://doi.org/10.1007/bf01294525
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0375-9601(78)90100-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012441333
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1063/1.1684354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057760009
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1103/physrevb.27.5534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532494
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1103/physrevb.27.588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532557
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1103/physrevb.29.2833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060534202
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1103/physrevlett.44.1337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784762
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1103/physrevlett.45.2029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785554
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1103/physrevlett.48.1842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060787228
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1103/physrevlett.55.1677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792146
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1103/physrevlett.55.2704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792480
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1103/physrevlett.70.1678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003120308
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1103/revmodphys.47.415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838792
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1201/b12808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109619387
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.3367/ufnr.0139.198302d.0303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071217288
    112 rdf:type schema:CreativeWork
    113 https://www.grid.ac/institutes/grid.436090.8 schema:alternateName Landau Institute for Theoretical Physics
    114 schema:name Landau Institute for Theoretical Physics GSP-1, Kosygina Street, 117940, Moscow V-994, Russia
    115 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...