High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-01

AUTHORS

Yun-Seung Kyung, Madhusudan V. Peshwa, David M. Gryte, Wei-Shou Hu

ABSTRACT

In a continuous culture with cell retention the perfusion rate must be adjusted dynamically to meet the cellular demand. An automated mechanism of adjusting the perfusion rate based on real-time measurement of the metabolic load of the bioreactor is important in achieving a high cell concentration and maintaining high viability. We employed oxygen uptake rate (OUR) measurement as an on-line metabolic indicator of the physiological state of the cells in the bioreactor and adjusted the perfusion rate accordingly. Using an internal hollow fiber microfiltration system for total cell retention, a cell concentration of almost 108 cells/mL was achieved. Although some aggregates were formed during the cultivation, the viability remained high as examined with confocal microscopy after fluorescent vital staining. The results demonstrate that on-line OUR measurement facilitates automated dynamic perfusion and allows a high cell concentration to be achieved. More... »

PAGES

183-190

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00749615

DOI

http://dx.doi.org/10.1007/bf00749615

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030737934

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7765589


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Survival", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Online Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Perfusion", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kyung", 
        "givenName": "Yun-Seung", 
        "id": "sg:person.0746403240.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746403240.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peshwa", 
        "givenName": "Madhusudan V.", 
        "id": "sg:person.01306202160.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306202160.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gryte", 
        "givenName": "David M.", 
        "id": "sg:person.0757646142.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757646142.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Wei-Shou", 
        "id": "sg:person.01064261433.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00365430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012142684", 
          "https://doi.org/10.1007/bf00365430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00365487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039126818", 
          "https://doi.org/10.1007/bf00365487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00499486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011807392", 
          "https://doi.org/10.1007/bf00499486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00257050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039787667", 
          "https://doi.org/10.1007/bf00257050"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-01", 
    "datePublishedReg": "1994-01-01", 
    "description": "In a continuous culture with cell retention the perfusion rate must be adjusted dynamically to meet the cellular demand. An automated mechanism of adjusting the perfusion rate based on real-time measurement of the metabolic load of the bioreactor is important in achieving a high cell concentration and maintaining high viability. We employed oxygen uptake rate (OUR) measurement as an on-line metabolic indicator of the physiological state of the cells in the bioreactor and adjusted the perfusion rate accordingly. Using an internal hollow fiber microfiltration system for total cell retention, a cell concentration of almost 108 cells/mL was achieved. Although some aggregates were formed during the cultivation, the viability remained high as examined with confocal microscopy after fluorescent vital staining. The results demonstrate that on-line OUR measurement facilitates automated dynamic perfusion and allows a high cell concentration to be achieved.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00749615", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1086307", 
        "issn": [
          "1381-5741", 
          "1573-0603"
        ], 
        "name": "Cytotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "cellular demand", 
      "mammalian cells", 
      "fluorescent vital staining", 
      "high cell concentrations", 
      "line oxygen uptake rate (OUR) measurement", 
      "cell concentration", 
      "confocal microscopy", 
      "physiological state", 
      "high density cultures", 
      "continuous culture", 
      "total cell retention", 
      "density cultures", 
      "metabolic load", 
      "high viability", 
      "cell retention", 
      "cells", 
      "vital staining", 
      "uptake rate measurements", 
      "viability", 
      "culture", 
      "bioreactor", 
      "oxygen uptake rate measurements", 
      "cultivation", 
      "metabolic indicators", 
      "mechanism", 
      "cells/", 
      "staining", 
      "aggregates", 
      "concentration", 
      "facilitates", 
      "retention", 
      "microscopy", 
      "rate", 
      "real-time measurement", 
      "results", 
      "indicators", 
      "system", 
      "rate measurements", 
      "state", 
      "demand", 
      "perfusion rate", 
      "microfiltration system", 
      "measurements", 
      "load", 
      "perfusion", 
      "dynamic perfusion", 
      "line metabolic indicator", 
      "internal hollow fiber microfiltration system", 
      "hollow fiber microfiltration system", 
      "fiber microfiltration system", 
      "line OUR measurement facilitates", 
      "OUR measurement facilitates", 
      "measurement facilitates"
    ], 
    "name": "High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements", 
    "pagination": "183-190", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030737934"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00749615"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7765589"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00749615", 
      "https://app.dimensions.ai/details/publication/pub.1030737934"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_256.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00749615"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00749615'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00749615'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00749615'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00749615'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      22 PREDICATES      90 URIs      78 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00749615 schema:about N24d4a98ea04645f39e5c312b434cbcb0
2 N459392b93b3a4e11b2660e80d6bd8a25
3 N4fc644ebfb4041d788544c21735d67a4
4 N6a79a98f87df4b8bb57c3ca875ed1b5b
5 N6ee64fe03d0744edbc91e0ec5261a1b1
6 Nbdae8ebc3ce54d8f971c70427ef93032
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author N5487e37bfac640fd93986d62a8f5de3d
10 schema:citation sg:pub.10.1007/bf00257050
11 sg:pub.10.1007/bf00365430
12 sg:pub.10.1007/bf00365487
13 sg:pub.10.1007/bf00499486
14 schema:datePublished 1994-01
15 schema:datePublishedReg 1994-01-01
16 schema:description In a continuous culture with cell retention the perfusion rate must be adjusted dynamically to meet the cellular demand. An automated mechanism of adjusting the perfusion rate based on real-time measurement of the metabolic load of the bioreactor is important in achieving a high cell concentration and maintaining high viability. We employed oxygen uptake rate (OUR) measurement as an on-line metabolic indicator of the physiological state of the cells in the bioreactor and adjusted the perfusion rate accordingly. Using an internal hollow fiber microfiltration system for total cell retention, a cell concentration of almost 108 cells/mL was achieved. Although some aggregates were formed during the cultivation, the viability remained high as examined with confocal microscopy after fluorescent vital staining. The results demonstrate that on-line OUR measurement facilitates automated dynamic perfusion and allows a high cell concentration to be achieved.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N5d261944821843a486cf2c4eff972f9f
21 Nd8e0b3bf30ff4a9b9daa568aca5cc0ae
22 sg:journal.1086307
23 schema:keywords OUR measurement facilitates
24 aggregates
25 bioreactor
26 cell concentration
27 cell retention
28 cells
29 cells/
30 cellular demand
31 concentration
32 confocal microscopy
33 continuous culture
34 cultivation
35 culture
36 demand
37 density cultures
38 dynamic perfusion
39 facilitates
40 fiber microfiltration system
41 fluorescent vital staining
42 high cell concentrations
43 high density cultures
44 high viability
45 hollow fiber microfiltration system
46 indicators
47 internal hollow fiber microfiltration system
48 line OUR measurement facilitates
49 line metabolic indicator
50 line oxygen uptake rate (OUR) measurement
51 load
52 mammalian cells
53 measurement facilitates
54 measurements
55 mechanism
56 metabolic indicators
57 metabolic load
58 microfiltration system
59 microscopy
60 oxygen uptake rate measurements
61 perfusion
62 perfusion rate
63 physiological state
64 rate
65 rate measurements
66 real-time measurement
67 results
68 retention
69 staining
70 state
71 system
72 total cell retention
73 uptake rate measurements
74 viability
75 vital staining
76 schema:name High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements
77 schema:pagination 183-190
78 schema:productId N42709ca783e948f3b531cbcbb9226e07
79 N53f9c05dcaa04529874b73285463c146
80 Nb1a8d6f8ed9b42ca86d8c1732e9b0e09
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030737934
82 https://doi.org/10.1007/bf00749615
83 schema:sdDatePublished 2022-01-01T18:06
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Na677d3fabcc44e049fb7641fb635c27a
86 schema:url https://doi.org/10.1007/bf00749615
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N24d4a98ea04645f39e5c312b434cbcb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Perfusion
92 rdf:type schema:DefinedTerm
93 N42709ca783e948f3b531cbcbb9226e07 schema:name pubmed_id
94 schema:value 7765589
95 rdf:type schema:PropertyValue
96 N459392b93b3a4e11b2660e80d6bd8a25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Oxygen
98 rdf:type schema:DefinedTerm
99 N4a919e50169942308e36dec1d48201d2 rdf:first sg:person.0757646142.97
100 rdf:rest N87e60388e8e54d09806b9821572a3504
101 N4fc644ebfb4041d788544c21735d67a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Cell Line
103 rdf:type schema:DefinedTerm
104 N51ec501823014327a1ed9977921cd515 rdf:first sg:person.01306202160.55
105 rdf:rest N4a919e50169942308e36dec1d48201d2
106 N53f9c05dcaa04529874b73285463c146 schema:name doi
107 schema:value 10.1007/bf00749615
108 rdf:type schema:PropertyValue
109 N5487e37bfac640fd93986d62a8f5de3d rdf:first sg:person.0746403240.66
110 rdf:rest N51ec501823014327a1ed9977921cd515
111 N5d261944821843a486cf2c4eff972f9f schema:volumeNumber 14
112 rdf:type schema:PublicationVolume
113 N6a79a98f87df4b8bb57c3ca875ed1b5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Cell Survival
115 rdf:type schema:DefinedTerm
116 N6ee64fe03d0744edbc91e0ec5261a1b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Humans
118 rdf:type schema:DefinedTerm
119 N87e60388e8e54d09806b9821572a3504 rdf:first sg:person.01064261433.49
120 rdf:rest rdf:nil
121 Na677d3fabcc44e049fb7641fb635c27a schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Nb1a8d6f8ed9b42ca86d8c1732e9b0e09 schema:name dimensions_id
124 schema:value pub.1030737934
125 rdf:type schema:PropertyValue
126 Nbdae8ebc3ce54d8f971c70427ef93032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Online Systems
128 rdf:type schema:DefinedTerm
129 Nd8e0b3bf30ff4a9b9daa568aca5cc0ae schema:issueNumber 3
130 rdf:type schema:PublicationIssue
131 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
132 schema:name Biological Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biochemistry and Cell Biology
136 rdf:type schema:DefinedTerm
137 sg:journal.1086307 schema:issn 1381-5741
138 1573-0603
139 schema:name Cytotechnology
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.01064261433.49 schema:affiliation grid-institutes:grid.17635.36
143 schema:familyName Hu
144 schema:givenName Wei-Shou
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49
146 rdf:type schema:Person
147 sg:person.01306202160.55 schema:affiliation grid-institutes:grid.17635.36
148 schema:familyName Peshwa
149 schema:givenName Madhusudan V.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306202160.55
151 rdf:type schema:Person
152 sg:person.0746403240.66 schema:affiliation grid-institutes:grid.17635.36
153 schema:familyName Kyung
154 schema:givenName Yun-Seung
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746403240.66
156 rdf:type schema:Person
157 sg:person.0757646142.97 schema:affiliation grid-institutes:grid.17635.36
158 schema:familyName Gryte
159 schema:givenName David M.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757646142.97
161 rdf:type schema:Person
162 sg:pub.10.1007/bf00257050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039787667
163 https://doi.org/10.1007/bf00257050
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/bf00365430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012142684
166 https://doi.org/10.1007/bf00365430
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/bf00365487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039126818
169 https://doi.org/10.1007/bf00365487
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/bf00499486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011807392
172 https://doi.org/10.1007/bf00499486
173 rdf:type schema:CreativeWork
174 grid-institutes:grid.17635.36 schema:alternateName Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA
175 schema:name Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...