High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-01

AUTHORS

Yun-Seung Kyung, Madhusudan V. Peshwa, David M. Gryte, Wei-Shou Hu

ABSTRACT

In a continuous culture with cell retention the perfusion rate must be adjusted dynamically to meet the cellular demand. An automated mechanism of adjusting the perfusion rate based on real-time measurement of the metabolic load of the bioreactor is important in achieving a high cell concentration and maintaining high viability. We employed oxygen uptake rate (OUR) measurement as an on-line metabolic indicator of the physiological state of the cells in the bioreactor and adjusted the perfusion rate accordingly. Using an internal hollow fiber microfiltration system for total cell retention, a cell concentration of almost 108 cells/mL was achieved. Although some aggregates were formed during the cultivation, the viability remained high as examined with confocal microscopy after fluorescent vital staining. The results demonstrate that on-line OUR measurement facilitates automated dynamic perfusion and allows a high cell concentration to be achieved. More... »

PAGES

183-190

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00749615

DOI

http://dx.doi.org/10.1007/bf00749615

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030737934

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7765589


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Survival", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Online Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Perfusion", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kyung", 
        "givenName": "Yun-Seung", 
        "id": "sg:person.0746403240.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746403240.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peshwa", 
        "givenName": "Madhusudan V.", 
        "id": "sg:person.01306202160.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306202160.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gryte", 
        "givenName": "David M.", 
        "id": "sg:person.0757646142.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757646142.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Wei-Shou", 
        "id": "sg:person.01064261433.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00499486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011807392", 
          "https://doi.org/10.1007/bf00499486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00365487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039126818", 
          "https://doi.org/10.1007/bf00365487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00365430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012142684", 
          "https://doi.org/10.1007/bf00365430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00257050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039787667", 
          "https://doi.org/10.1007/bf00257050"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-01", 
    "datePublishedReg": "1994-01-01", 
    "description": "In a continuous culture with cell retention the perfusion rate must be adjusted dynamically to meet the cellular demand. An automated mechanism of adjusting the perfusion rate based on real-time measurement of the metabolic load of the bioreactor is important in achieving a high cell concentration and maintaining high viability. We employed oxygen uptake rate (OUR) measurement as an on-line metabolic indicator of the physiological state of the cells in the bioreactor and adjusted the perfusion rate accordingly. Using an internal hollow fiber microfiltration system for total cell retention, a cell concentration of almost 108 cells/mL was achieved. Although some aggregates were formed during the cultivation, the viability remained high as examined with confocal microscopy after fluorescent vital staining. The results demonstrate that on-line OUR measurement facilitates automated dynamic perfusion and allows a high cell concentration to be achieved.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00749615", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1086307", 
        "issn": [
          "1381-5741", 
          "1573-0603"
        ], 
        "name": "Cytotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "fluorescent vital staining", 
      "cellular demand", 
      "high cell concentrations", 
      "mammalian cells", 
      "cell concentration", 
      "confocal microscopy", 
      "physiological state", 
      "total cell retention", 
      "high-density cultures", 
      "line oxygen uptake rate measurements", 
      "uptake rate measurements", 
      "density cultures", 
      "continuous culture", 
      "metabolic load", 
      "cell retention", 
      "high viability", 
      "cells", 
      "vital staining", 
      "viability", 
      "oxygen uptake rate measurements", 
      "metabolic indicators", 
      "bioreactor", 
      "culture", 
      "cultivation", 
      "mechanism", 
      "cells/", 
      "staining", 
      "concentration", 
      "aggregates", 
      "microscopy", 
      "facilitates", 
      "retention", 
      "rate", 
      "results", 
      "rate measurements", 
      "real-time measurement", 
      "indicators", 
      "system", 
      "dynamic perfusion", 
      "state", 
      "demand", 
      "measurements", 
      "perfusion rate", 
      "load", 
      "perfusion", 
      "microfiltration system"
    ], 
    "name": "High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements", 
    "pagination": "183-190", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030737934"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00749615"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7765589"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00749615", 
      "https://app.dimensions.ai/details/publication/pub.1030737934"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_220.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00749615"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00749615'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00749615'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00749615'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00749615'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      22 PREDICATES      83 URIs      71 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00749615 schema:about N71bee1c4cf5f4b4fa14d8f80c3c59118
2 N7558d7d79b0e43b0ae9759cb405cefaa
3 N77cff690b5ea4419a23a8cb37932ecc8
4 Nb055995ccbe1461bbf6f1b8219b33ae1
5 Nb491503909bd4523b59507ce8e688add
6 Nbd481e888bac409c81a05ce6d9788f0b
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author Ndb5e3834dab74b32a937c100f634fa6b
10 schema:citation sg:pub.10.1007/bf00257050
11 sg:pub.10.1007/bf00365430
12 sg:pub.10.1007/bf00365487
13 sg:pub.10.1007/bf00499486
14 schema:datePublished 1994-01
15 schema:datePublishedReg 1994-01-01
16 schema:description In a continuous culture with cell retention the perfusion rate must be adjusted dynamically to meet the cellular demand. An automated mechanism of adjusting the perfusion rate based on real-time measurement of the metabolic load of the bioreactor is important in achieving a high cell concentration and maintaining high viability. We employed oxygen uptake rate (OUR) measurement as an on-line metabolic indicator of the physiological state of the cells in the bioreactor and adjusted the perfusion rate accordingly. Using an internal hollow fiber microfiltration system for total cell retention, a cell concentration of almost 108 cells/mL was achieved. Although some aggregates were formed during the cultivation, the viability remained high as examined with confocal microscopy after fluorescent vital staining. The results demonstrate that on-line OUR measurement facilitates automated dynamic perfusion and allows a high cell concentration to be achieved.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N31ebbbf1fc4247f8a2009f1f7bf034c2
21 Nf34ee47528ae493fb99a633ff71040c8
22 sg:journal.1086307
23 schema:keywords aggregates
24 bioreactor
25 cell concentration
26 cell retention
27 cells
28 cells/
29 cellular demand
30 concentration
31 confocal microscopy
32 continuous culture
33 cultivation
34 culture
35 demand
36 density cultures
37 dynamic perfusion
38 facilitates
39 fluorescent vital staining
40 high cell concentrations
41 high viability
42 high-density cultures
43 indicators
44 line oxygen uptake rate measurements
45 load
46 mammalian cells
47 measurements
48 mechanism
49 metabolic indicators
50 metabolic load
51 microfiltration system
52 microscopy
53 oxygen uptake rate measurements
54 perfusion
55 perfusion rate
56 physiological state
57 rate
58 rate measurements
59 real-time measurement
60 results
61 retention
62 staining
63 state
64 system
65 total cell retention
66 uptake rate measurements
67 viability
68 vital staining
69 schema:name High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements
70 schema:pagination 183-190
71 schema:productId N39cd39ff4c3a481fb4339397bfcc1081
72 N964888d95ea54657acc693d3e1e402ec
73 Nbc19e45099fa4ad8b1989877f7617e61
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030737934
75 https://doi.org/10.1007/bf00749615
76 schema:sdDatePublished 2022-05-20T07:18
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N37d2a7c899af4cbf8c1f938c0a71654c
79 schema:url https://doi.org/10.1007/bf00749615
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N1a0081ecd89f456899545ff7f2d5506a rdf:first sg:person.0757646142.97
84 rdf:rest N1a89e465fbc3429683822e77d651b3f7
85 N1a89e465fbc3429683822e77d651b3f7 rdf:first sg:person.01064261433.49
86 rdf:rest rdf:nil
87 N31ebbbf1fc4247f8a2009f1f7bf034c2 schema:volumeNumber 14
88 rdf:type schema:PublicationVolume
89 N37d2a7c899af4cbf8c1f938c0a71654c schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N39cd39ff4c3a481fb4339397bfcc1081 schema:name pubmed_id
92 schema:value 7765589
93 rdf:type schema:PropertyValue
94 N71bee1c4cf5f4b4fa14d8f80c3c59118 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Humans
96 rdf:type schema:DefinedTerm
97 N7558d7d79b0e43b0ae9759cb405cefaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Perfusion
99 rdf:type schema:DefinedTerm
100 N77cff690b5ea4419a23a8cb37932ecc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Cell Survival
102 rdf:type schema:DefinedTerm
103 N964888d95ea54657acc693d3e1e402ec schema:name doi
104 schema:value 10.1007/bf00749615
105 rdf:type schema:PropertyValue
106 Nb055995ccbe1461bbf6f1b8219b33ae1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Online Systems
108 rdf:type schema:DefinedTerm
109 Nb491503909bd4523b59507ce8e688add schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Oxygen
111 rdf:type schema:DefinedTerm
112 Nbc19e45099fa4ad8b1989877f7617e61 schema:name dimensions_id
113 schema:value pub.1030737934
114 rdf:type schema:PropertyValue
115 Nbd481e888bac409c81a05ce6d9788f0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Cell Line
117 rdf:type schema:DefinedTerm
118 Ndb5e3834dab74b32a937c100f634fa6b rdf:first sg:person.0746403240.66
119 rdf:rest Nffab2dc87a2d44e5a3be58129f1f29e8
120 Nf34ee47528ae493fb99a633ff71040c8 schema:issueNumber 3
121 rdf:type schema:PublicationIssue
122 Nffab2dc87a2d44e5a3be58129f1f29e8 rdf:first sg:person.01306202160.55
123 rdf:rest N1a0081ecd89f456899545ff7f2d5506a
124 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biological Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biochemistry and Cell Biology
129 rdf:type schema:DefinedTerm
130 sg:journal.1086307 schema:issn 1381-5741
131 1573-0603
132 schema:name Cytotechnology
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.01064261433.49 schema:affiliation grid-institutes:grid.17635.36
136 schema:familyName Hu
137 schema:givenName Wei-Shou
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49
139 rdf:type schema:Person
140 sg:person.01306202160.55 schema:affiliation grid-institutes:grid.17635.36
141 schema:familyName Peshwa
142 schema:givenName Madhusudan V.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306202160.55
144 rdf:type schema:Person
145 sg:person.0746403240.66 schema:affiliation grid-institutes:grid.17635.36
146 schema:familyName Kyung
147 schema:givenName Yun-Seung
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746403240.66
149 rdf:type schema:Person
150 sg:person.0757646142.97 schema:affiliation grid-institutes:grid.17635.36
151 schema:familyName Gryte
152 schema:givenName David M.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757646142.97
154 rdf:type schema:Person
155 sg:pub.10.1007/bf00257050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039787667
156 https://doi.org/10.1007/bf00257050
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/bf00365430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012142684
159 https://doi.org/10.1007/bf00365430
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/bf00365487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039126818
162 https://doi.org/10.1007/bf00365487
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/bf00499486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011807392
165 https://doi.org/10.1007/bf00499486
166 rdf:type schema:CreativeWork
167 grid-institutes:grid.17635.36 schema:alternateName Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA
168 schema:name Department of Chemical Engineering & Materials Science, University of Minnesota, 55455-0132, Minneapolis, MN, USA
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...