Measurement of the effect of microstructural variations on the energy of (Co, Ni)-Cr23 C6 eutectic View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-10

AUTHORS

G. Zambelli, W. Kurz

ABSTRACT

The measurement of sector areas of load-deflection curves in the Tattersall-Tappin test permits evaluation of the fracture energy dissipated by the microstructure during crack propagation. This method has been applied to the oriented pseudo-binary (Co, Ni)-Cr23C6 eutectic alloys which exhibit an irregular, continuous network of brittle carbides within a ductile (Co, Ni, Cr) phase. In spite of the complexity of the microstructure analysed, the method proposed for measuring the fracture energy seems to be capable of revealing the fundamental influence of the size, volume and properties of the phases on the fracture energy of the alloys. An increase in the fracture energy for crack propagation has been observed with: (a) an increase in the size (spacing) of the phases for a constant volume fraction; (b) an increase in the volume fraction of the ductile phase; (c) a progressive increase of the Ni content of the alloy (for values above 5 wt % Ni); the highest values being observed for the pure ternary system: Co-Cr23C6 and Ni-Cr23C6. More... »

PAGES

2384-2390

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00737027

DOI

http://dx.doi.org/10.1007/bf00737027

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017577181


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Engineering, Federal Institute of Technology, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Materials Engineering, Federal Institute of Technology, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zambelli", 
        "givenName": "G.", 
        "id": "sg:person.07630376555.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07630376555.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Engineering, Federal Institute of Technology, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Materials Engineering, Federal Institute of Technology, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurz", 
        "givenName": "W.", 
        "id": "sg:person.010017145423.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00550177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045357915", 
          "https://doi.org/10.1007/bf00550177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00541803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051319903", 
          "https://doi.org/10.1007/bf00541803"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1979-10", 
    "datePublishedReg": "1979-10-01", 
    "description": "The measurement of sector areas of load-deflection curves in the Tattersall-Tappin test permits evaluation of the fracture energy dissipated by the microstructure during crack propagation. This method has been applied to the oriented pseudo-binary (Co, Ni)-Cr23C6 eutectic alloys which exhibit an irregular, continuous network of brittle carbides within a ductile (Co, Ni, Cr) phase. In spite of the complexity of the microstructure analysed, the method proposed for measuring the fracture energy seems to be capable of revealing the fundamental influence of the size, volume and properties of the phases on the fracture energy of the alloys. An increase in the fracture energy for crack propagation has been observed with: (a) an increase in the size (spacing) of the phases for a constant volume fraction; (b) an increase in the volume fraction of the ductile phase; (c) a progressive increase of the Ni content of the alloy (for values above 5 wt % Ni); the highest values being observed for the pure ternary system: Co-Cr23C6 and Ni-Cr23C6.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00737027", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4811"
        ], 
        "name": "Journal of Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "keywords": [
      "fracture energy", 
      "crack propagation", 
      "ductile phase", 
      "volume fraction", 
      "load-deflection curves", 
      "constant volume fraction", 
      "brittle carbides", 
      "eutectic alloy", 
      "microstructural variations", 
      "alloy", 
      "continuous network", 
      "Ni content", 
      "microstructure", 
      "ternary system", 
      "energy", 
      "propagation", 
      "carbide", 
      "phase", 
      "fundamental influence", 
      "higher values", 
      "measurements", 
      "sector area", 
      "CO", 
      "properties", 
      "size", 
      "method", 
      "increase", 
      "fraction", 
      "influence", 
      "test", 
      "system", 
      "curves", 
      "content", 
      "volume", 
      "variation", 
      "values", 
      "effect", 
      "area", 
      "network", 
      "evaluation", 
      "complexity", 
      "spite", 
      "binaries", 
      "progressive increase", 
      "C6", 
      "Tattersall-Tappin test", 
      "pure ternary system", 
      "Co-Cr23C6", 
      "Ni-Cr23C6"
    ], 
    "name": "Measurement of the effect of microstructural variations on the energy of (Co, Ni)-Cr23 C6 eutectic", 
    "pagination": "2384-2390", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017577181"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00737027"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00737027", 
      "https://app.dimensions.ai/details/publication/pub.1017577181"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_147.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00737027"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00737027'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00737027'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00737027'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00737027'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      22 PREDICATES      77 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00737027 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd9a4bbce029244f79f7fe4df30d8ac63
4 schema:citation sg:pub.10.1007/bf00541803
5 sg:pub.10.1007/bf00550177
6 schema:datePublished 1979-10
7 schema:datePublishedReg 1979-10-01
8 schema:description The measurement of sector areas of load-deflection curves in the Tattersall-Tappin test permits evaluation of the fracture energy dissipated by the microstructure during crack propagation. This method has been applied to the oriented pseudo-binary (Co, Ni)-Cr23C6 eutectic alloys which exhibit an irregular, continuous network of brittle carbides within a ductile (Co, Ni, Cr) phase. In spite of the complexity of the microstructure analysed, the method proposed for measuring the fracture energy seems to be capable of revealing the fundamental influence of the size, volume and properties of the phases on the fracture energy of the alloys. An increase in the fracture energy for crack propagation has been observed with: (a) an increase in the size (spacing) of the phases for a constant volume fraction; (b) an increase in the volume fraction of the ductile phase; (c) a progressive increase of the Ni content of the alloy (for values above 5 wt % Ni); the highest values being observed for the pure ternary system: Co-Cr23C6 and Ni-Cr23C6.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N5cd8781cdac14e6eb016226abc1226b5
13 N6b8bc1028d3b408b81d9e612f8161af2
14 sg:journal.1312116
15 schema:keywords C6
16 CO
17 Co-Cr23C6
18 Ni content
19 Ni-Cr23C6
20 Tattersall-Tappin test
21 alloy
22 area
23 binaries
24 brittle carbides
25 carbide
26 complexity
27 constant volume fraction
28 content
29 continuous network
30 crack propagation
31 curves
32 ductile phase
33 effect
34 energy
35 eutectic alloy
36 evaluation
37 fraction
38 fracture energy
39 fundamental influence
40 higher values
41 increase
42 influence
43 load-deflection curves
44 measurements
45 method
46 microstructural variations
47 microstructure
48 network
49 phase
50 progressive increase
51 propagation
52 properties
53 pure ternary system
54 sector area
55 size
56 spite
57 system
58 ternary system
59 test
60 values
61 variation
62 volume
63 volume fraction
64 schema:name Measurement of the effect of microstructural variations on the energy of (Co, Ni)-Cr23 C6 eutectic
65 schema:pagination 2384-2390
66 schema:productId Ncc6325c30c85498d96f8b35985c7da0f
67 Nf1768d25a51f47dcb3d0e883f4173ea9
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017577181
69 https://doi.org/10.1007/bf00737027
70 schema:sdDatePublished 2022-01-01T18:01
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Ncf5ebb4af08140778179a4aff515d040
73 schema:url https://doi.org/10.1007/bf00737027
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N09f94967bf8b49f3a09555d59e85d3a0 rdf:first sg:person.010017145423.41
78 rdf:rest rdf:nil
79 N5cd8781cdac14e6eb016226abc1226b5 schema:issueNumber 10
80 rdf:type schema:PublicationIssue
81 N6b8bc1028d3b408b81d9e612f8161af2 schema:volumeNumber 14
82 rdf:type schema:PublicationVolume
83 Ncc6325c30c85498d96f8b35985c7da0f schema:name dimensions_id
84 schema:value pub.1017577181
85 rdf:type schema:PropertyValue
86 Ncf5ebb4af08140778179a4aff515d040 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nd9a4bbce029244f79f7fe4df30d8ac63 rdf:first sg:person.07630376555.08
89 rdf:rest N09f94967bf8b49f3a09555d59e85d3a0
90 Nf1768d25a51f47dcb3d0e883f4173ea9 schema:name doi
91 schema:value 10.1007/bf00737027
92 rdf:type schema:PropertyValue
93 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
94 schema:name Engineering
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
97 schema:name Materials Engineering
98 rdf:type schema:DefinedTerm
99 sg:journal.1312116 schema:issn 0022-2461
100 1573-4811
101 schema:name Journal of Materials Science
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.010017145423.41 schema:affiliation grid-institutes:None
105 schema:familyName Kurz
106 schema:givenName W.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017145423.41
108 rdf:type schema:Person
109 sg:person.07630376555.08 schema:affiliation grid-institutes:None
110 schema:familyName Zambelli
111 schema:givenName G.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07630376555.08
113 rdf:type schema:Person
114 sg:pub.10.1007/bf00541803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051319903
115 https://doi.org/10.1007/bf00541803
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf00550177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045357915
118 https://doi.org/10.1007/bf00550177
119 rdf:type schema:CreativeWork
120 grid-institutes:None schema:alternateName Department of Materials Engineering, Federal Institute of Technology, Lausanne, Switzerland
121 schema:name Department of Materials Engineering, Federal Institute of Technology, Lausanne, Switzerland
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...