An application of the Nekhoroshev theorem to the restricted three-body problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-09

AUTHORS

Alessandra Cellett, Laura Ferrara

ABSTRACT

We studied the stability of the restricted circular three-body problem. We introduced a model Hamiltonian in action-angle Delaunay variables. which is nearly-integrable with the perturbing parameter representing the mass ratio of the primaries. We performed a normal form reduction to remove the perturbation in the initial Hamiltonian to higher orders in the perturbing parameter. Next we applied a result on the Nekhoroshev theorem proved by Pöschel [13] to obtain the confinement in phase space of the action variables (related to the elliptic elements of the minor body) for an exponentially long time. As a concrete application. we selected the Sun-Ceres-Jupiter case, obtaining (after the proper normal form reduction) a stability result for a time comparable to the age of the solar system (i.e., 4.9 · 109 years) and for a mass ratio of the primaries less or equal than 10−6. More... »

PAGES

261-272

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00728351

DOI

http://dx.doi.org/10.1007/bf00728351

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009176965


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica Pura e Applicata, Universit\u00e1 di L Aquila, Via Vetoio, I-67010, Coppito (L'Aquila), Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cellett", 
        "givenName": "Alessandra", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of L'Aquila", 
          "id": "https://www.grid.ac/institutes/grid.158820.6", 
          "name": [
            "Corso di Laurea in Matematica, Universit\u00e1 di L'Aquila, Via Vetoio, I-67010, Coppito (L'Aquila), Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferrara", 
        "givenName": "Laura", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03025718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001281283", 
          "https://doi.org/10.1007/bf03025718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03025718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001281283", 
          "https://doi.org/10.1007/bf03025718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-00731-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010269505", 
          "https://doi.org/10.1007/978-3-662-00731-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-00731-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010269505", 
          "https://doi.org/10.1007/978-3-662-00731-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(89)90161-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012444730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61215-2_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014474523", 
          "https://doi.org/10.1007/978-3-642-61215-2_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031307341", 
          "https://doi.org/10.1007/bf01230338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031307341", 
          "https://doi.org/10.1007/bf01230338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00913410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042108409", 
          "https://doi.org/10.1007/bf00913410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00913410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042108409", 
          "https://doi.org/10.1007/bf00913410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043338720", 
          "https://doi.org/10.1007/bf01011301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043338720", 
          "https://doi.org/10.1007/bf01011301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049639183", 
          "https://doi.org/10.1007/bf00048985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049639183", 
          "https://doi.org/10.1007/bf00048985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1977v032n06abeh003859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058194264"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-09", 
    "datePublishedReg": "1996-09-01", 
    "description": "We studied the stability of the restricted circular three-body problem. We introduced a model Hamiltonian in action-angle Delaunay variables. which is nearly-integrable with the perturbing parameter representing the mass ratio of the primaries. We performed a normal form reduction to remove the perturbation in the initial Hamiltonian to higher orders in the perturbing parameter. Next we applied a result on the Nekhoroshev theorem proved by P\u00f6schel [13] to obtain the confinement in phase space of the action variables (related to the elliptic elements of the minor body) for an exponentially long time. As a concrete application. we selected the Sun-Ceres-Jupiter case, obtaining (after the proper normal form reduction) a stability result for a time comparable to the age of the solar system (i.e., 4.9 \u00b7 109 years) and for a mass ratio of the primaries less or equal than 10\u22126.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00728351", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "name": "An application of the Nekhoroshev theorem to the restricted three-body problem", 
    "pagination": "261-272", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2bb7e828bad697ad0b834f531cfcee69c3bf5fcf25fcbab6a4c5289a58dad22e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00728351"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009176965"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00728351", 
      "https://app.dimensions.ai/details/publication/pub.1009176965"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117103_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00728351"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00728351'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00728351'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00728351'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00728351'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00728351 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N780ec645f0064f11a4d192bf8e1b9019
4 schema:citation sg:pub.10.1007/978-3-642-61215-2_2
5 sg:pub.10.1007/978-3-662-00731-0
6 sg:pub.10.1007/bf00048985
7 sg:pub.10.1007/bf00913410
8 sg:pub.10.1007/bf01011301
9 sg:pub.10.1007/bf01230338
10 sg:pub.10.1007/bf03025718
11 https://doi.org/10.1016/0022-0396(89)90161-7
12 https://doi.org/10.1070/rm1977v032n06abeh003859
13 schema:datePublished 1996-09
14 schema:datePublishedReg 1996-09-01
15 schema:description We studied the stability of the restricted circular three-body problem. We introduced a model Hamiltonian in action-angle Delaunay variables. which is nearly-integrable with the perturbing parameter representing the mass ratio of the primaries. We performed a normal form reduction to remove the perturbation in the initial Hamiltonian to higher orders in the perturbing parameter. Next we applied a result on the Nekhoroshev theorem proved by Pöschel [13] to obtain the confinement in phase space of the action variables (related to the elliptic elements of the minor body) for an exponentially long time. As a concrete application. we selected the Sun-Ceres-Jupiter case, obtaining (after the proper normal form reduction) a stability result for a time comparable to the age of the solar system (i.e., 4.9 · 109 years) and for a mass ratio of the primaries less or equal than 10−6.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N63c96efcd7b543f8b1f9329c02f269f4
20 Nc7adf45a03794532bdd2ece5c868f5fa
21 sg:journal.1136436
22 schema:name An application of the Nekhoroshev theorem to the restricted three-body problem
23 schema:pagination 261-272
24 schema:productId N03102375f4964816a4445078c7b178ec
25 N390e16fbd58b4c80a0b8fe8e584d9775
26 Nd1c3bcaff37d458fa709c9bc813c5cc7
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009176965
28 https://doi.org/10.1007/bf00728351
29 schema:sdDatePublished 2019-04-11T14:18
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N8713364ae34e4c4f998736cfae4f8f43
32 schema:url http://link.springer.com/10.1007/BF00728351
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N03102375f4964816a4445078c7b178ec schema:name doi
37 schema:value 10.1007/bf00728351
38 rdf:type schema:PropertyValue
39 N085038f7f1a646888409c56bc76b0a8b schema:affiliation N7d40790c48644300be2572b5a4c409d7
40 schema:familyName Cellett
41 schema:givenName Alessandra
42 rdf:type schema:Person
43 N390e16fbd58b4c80a0b8fe8e584d9775 schema:name readcube_id
44 schema:value 2bb7e828bad697ad0b834f531cfcee69c3bf5fcf25fcbab6a4c5289a58dad22e
45 rdf:type schema:PropertyValue
46 N4475e14069e145c3823fbf0d9d4bf625 rdf:first Nba285f862bc74e69bc968b9bcd66e02c
47 rdf:rest rdf:nil
48 N63c96efcd7b543f8b1f9329c02f269f4 schema:volumeNumber 64
49 rdf:type schema:PublicationVolume
50 N780ec645f0064f11a4d192bf8e1b9019 rdf:first N085038f7f1a646888409c56bc76b0a8b
51 rdf:rest N4475e14069e145c3823fbf0d9d4bf625
52 N7d40790c48644300be2572b5a4c409d7 schema:name Dipartimento di Matematica Pura e Applicata, Universitá di L Aquila, Via Vetoio, I-67010, Coppito (L'Aquila), Italy
53 rdf:type schema:Organization
54 N8713364ae34e4c4f998736cfae4f8f43 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nba285f862bc74e69bc968b9bcd66e02c schema:affiliation https://www.grid.ac/institutes/grid.158820.6
57 schema:familyName Ferrara
58 schema:givenName Laura
59 rdf:type schema:Person
60 Nc7adf45a03794532bdd2ece5c868f5fa schema:issueNumber 3
61 rdf:type schema:PublicationIssue
62 Nd1c3bcaff37d458fa709c9bc813c5cc7 schema:name dimensions_id
63 schema:value pub.1009176965
64 rdf:type schema:PropertyValue
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
69 schema:name Numerical and Computational Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136436 schema:issn 0008-8714
72 0923-2958
73 schema:name Celestial Mechanics and Dynamical Astronomy
74 rdf:type schema:Periodical
75 sg:pub.10.1007/978-3-642-61215-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014474523
76 https://doi.org/10.1007/978-3-642-61215-2_2
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/978-3-662-00731-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010269505
79 https://doi.org/10.1007/978-3-662-00731-0
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf00048985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049639183
82 https://doi.org/10.1007/bf00048985
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf00913410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042108409
85 https://doi.org/10.1007/bf00913410
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01011301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043338720
88 https://doi.org/10.1007/bf01011301
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01230338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031307341
91 https://doi.org/10.1007/bf01230338
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf03025718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001281283
94 https://doi.org/10.1007/bf03025718
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0022-0396(89)90161-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012444730
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1070/rm1977v032n06abeh003859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194264
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.158820.6 schema:alternateName University of L'Aquila
101 schema:name Corso di Laurea in Matematica, Universitá di L'Aquila, Via Vetoio, I-67010, Coppito (L'Aquila), Italy
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...