A comparison of boundary layer diffusion schemes in unstable conditions over land View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-10

AUTHORS

A. A. M. Holtslag, E. Van Meijgaard, W. C. De Rooy

ABSTRACT

We compare the results of a local and a nonlocal scheme for vertical diffusion in the atmospheric boundary layer with observations at the 200 m tower at Cabauw. This is done for a 12 h period during daytime on 31 May 1978, which is characterised by strong insolation, clear skies, moderately strong winds and weak advection. The local diffusion scheme uses an eddy diffusivity determined independently at each point along the vertical based on local vertical gradients of wind and virtual potential temperature, similar to the usual approach in atmospheric models. The nonlocal scheme determines an eddy diffusivity profile based on a diagnosed boundary-layer height and a turbulent velocity scale. It also incorporates nonlocal (vertical) transport effects for heat and moisture. The boundary-layer diffusion schemes are forced with the locally observed fluxes for heat and moisture. The outputs of the scheme are compared with the observed mean structure along the Cabauw tower, and the radiosonde profile at a nearby location (De Bilt). Overall, the nonlocal scheme transports moisture away from the surface more rapidly than the local scheme, and deposits the moisture at higher levels. The local scheme tends to saturate the lowest model levels unrealistically in comparison with the observations. We also compare the outputs of the two diffusion schemes with the results of a transilient model simulation. Subsequently, we study the impact on the model behaviour by varying important parameters in both diffusion schemes and we investigate the sensitivity to uncertainty in the environmental conditions. Finally, we study the interaction of the diffusion schemes with a simple surface flux scheme. More... »

PAGES

69-95

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00710891

DOI

http://dx.doi.org/10.1007/bf00710891

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005035322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holtslag", 
        "givenName": "A. A. M.", 
        "id": "sg:person.01364752447.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364752447.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Meijgaard", 
        "givenName": "E.", 
        "id": "sg:person.016410121107.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016410121107.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Rooy", 
        "givenName": "W. C.", 
        "id": "sg:person.016270664456.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016270664456.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00121117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019462431", 
          "https://doi.org/10.1007/bf00121117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00117468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035169405", 
          "https://doi.org/10.1007/bf00117468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00122760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000170108", 
          "https://doi.org/10.1007/bf00122760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00240838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048893766", 
          "https://doi.org/10.1007/bf00240838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00117978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013264681", 
          "https://doi.org/10.1007/bf00117978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00117449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010537565", 
          "https://doi.org/10.1007/bf00117449"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-10", 
    "datePublishedReg": "1995-10-01", 
    "description": "We compare the results of a local and a nonlocal scheme for vertical diffusion in the atmospheric boundary layer with observations at the 200 m tower at Cabauw. This is done for a 12 h period during daytime on 31 May 1978, which is characterised by strong insolation, clear skies, moderately strong winds and weak advection. The local diffusion scheme uses an eddy diffusivity determined independently at each point along the vertical based on local vertical gradients of wind and virtual potential temperature, similar to the usual approach in atmospheric models. The nonlocal scheme determines an eddy diffusivity profile based on a diagnosed boundary-layer height and a turbulent velocity scale. It also incorporates nonlocal (vertical) transport effects for heat and moisture. The boundary-layer diffusion schemes are forced with the locally observed fluxes for heat and moisture. The outputs of the scheme are compared with the observed mean structure along the Cabauw tower, and the radiosonde profile at a nearby location (De Bilt). Overall, the nonlocal scheme transports moisture away from the surface more rapidly than the local scheme, and deposits the moisture at higher levels. The local scheme tends to saturate the lowest model levels unrealistically in comparison with the observations. We also compare the outputs of the two diffusion schemes with the results of a transilient model simulation. Subsequently, we study the impact on the model behaviour by varying important parameters in both diffusion schemes and we investigate the sensitivity to uncertainty in the environmental conditions. Finally, we study the interaction of the diffusion schemes with a simple surface flux scheme.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00710891", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049385", 
        "issn": [
          "0006-8314", 
          "1573-1472"
        ], 
        "name": "Boundary-Layer Meteorology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "76"
      }
    ], 
    "keywords": [
      "turbulent velocity scale", 
      "diffusion scheme", 
      "local vertical gradients", 
      "atmospheric boundary layer", 
      "eddy diffusivity profiles", 
      "virtual potential temperature", 
      "surface flux scheme", 
      "boundary layer height", 
      "velocity scale", 
      "nonlocal scheme", 
      "boundary layer", 
      "eddy diffusivity", 
      "vertical diffusion", 
      "diffusivity profiles", 
      "lowest model level", 
      "Cabauw tower", 
      "flux scheme", 
      "nonlocal transport effects", 
      "radiosonde profiles", 
      "important parameters", 
      "transport effects", 
      "strong winds", 
      "unstable conditions", 
      "vertical gradient", 
      "potential temperature", 
      "atmospheric model", 
      "strong insolation", 
      "model simulations", 
      "heat", 
      "local scheme", 
      "weak advection", 
      "clear sky", 
      "moisture", 
      "tower", 
      "wind", 
      "observed flux", 
      "nearby locations", 
      "mean structure", 
      "model level", 
      "scheme", 
      "model behavior", 
      "diffusivity", 
      "environmental conditions", 
      "layer", 
      "Cabauw", 
      "output", 
      "simulations", 
      "temperature", 
      "surface", 
      "flux", 
      "conditions", 
      "advection", 
      "diffusion", 
      "insolation", 
      "height", 
      "usual approach", 
      "parameters", 
      "gradient", 
      "transport", 
      "land", 
      "results", 
      "comparison", 
      "uncertainty", 
      "behavior", 
      "structure", 
      "daytime", 
      "profile", 
      "sky", 
      "model", 
      "observations", 
      "h period", 
      "location", 
      "scale", 
      "period", 
      "point", 
      "approach", 
      "effect", 
      "sensitivity", 
      "impact", 
      "interaction", 
      "levels", 
      "high levels"
    ], 
    "name": "A comparison of boundary layer diffusion schemes in unstable conditions over land", 
    "pagination": "69-95", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005035322"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00710891"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00710891", 
      "https://app.dimensions.ai/details/publication/pub.1005035322"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_272.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00710891"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00710891'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00710891'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00710891'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00710891'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      113 URIs      99 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00710891 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nec34d3f070cf49e5a2e4ce84e0f4783d
4 schema:citation sg:pub.10.1007/bf00117449
5 sg:pub.10.1007/bf00117468
6 sg:pub.10.1007/bf00117978
7 sg:pub.10.1007/bf00121117
8 sg:pub.10.1007/bf00122760
9 sg:pub.10.1007/bf00240838
10 schema:datePublished 1995-10
11 schema:datePublishedReg 1995-10-01
12 schema:description We compare the results of a local and a nonlocal scheme for vertical diffusion in the atmospheric boundary layer with observations at the 200 m tower at Cabauw. This is done for a 12 h period during daytime on 31 May 1978, which is characterised by strong insolation, clear skies, moderately strong winds and weak advection. The local diffusion scheme uses an eddy diffusivity determined independently at each point along the vertical based on local vertical gradients of wind and virtual potential temperature, similar to the usual approach in atmospheric models. The nonlocal scheme determines an eddy diffusivity profile based on a diagnosed boundary-layer height and a turbulent velocity scale. It also incorporates nonlocal (vertical) transport effects for heat and moisture. The boundary-layer diffusion schemes are forced with the locally observed fluxes for heat and moisture. The outputs of the scheme are compared with the observed mean structure along the Cabauw tower, and the radiosonde profile at a nearby location (De Bilt). Overall, the nonlocal scheme transports moisture away from the surface more rapidly than the local scheme, and deposits the moisture at higher levels. The local scheme tends to saturate the lowest model levels unrealistically in comparison with the observations. We also compare the outputs of the two diffusion schemes with the results of a transilient model simulation. Subsequently, we study the impact on the model behaviour by varying important parameters in both diffusion schemes and we investigate the sensitivity to uncertainty in the environmental conditions. Finally, we study the interaction of the diffusion schemes with a simple surface flux scheme.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N321b9c66fe3e464daeb3073427569967
16 N7d150185b73e4bde8c38a44d4718094d
17 sg:journal.1049385
18 schema:keywords Cabauw
19 Cabauw tower
20 advection
21 approach
22 atmospheric boundary layer
23 atmospheric model
24 behavior
25 boundary layer
26 boundary layer height
27 clear sky
28 comparison
29 conditions
30 daytime
31 diffusion
32 diffusion scheme
33 diffusivity
34 diffusivity profiles
35 eddy diffusivity
36 eddy diffusivity profiles
37 effect
38 environmental conditions
39 flux
40 flux scheme
41 gradient
42 h period
43 heat
44 height
45 high levels
46 impact
47 important parameters
48 insolation
49 interaction
50 land
51 layer
52 levels
53 local scheme
54 local vertical gradients
55 location
56 lowest model level
57 mean structure
58 model
59 model behavior
60 model level
61 model simulations
62 moisture
63 nearby locations
64 nonlocal scheme
65 nonlocal transport effects
66 observations
67 observed flux
68 output
69 parameters
70 period
71 point
72 potential temperature
73 profile
74 radiosonde profiles
75 results
76 scale
77 scheme
78 sensitivity
79 simulations
80 sky
81 strong insolation
82 strong winds
83 structure
84 surface
85 surface flux scheme
86 temperature
87 tower
88 transport
89 transport effects
90 turbulent velocity scale
91 uncertainty
92 unstable conditions
93 usual approach
94 velocity scale
95 vertical diffusion
96 vertical gradient
97 virtual potential temperature
98 weak advection
99 wind
100 schema:name A comparison of boundary layer diffusion schemes in unstable conditions over land
101 schema:pagination 69-95
102 schema:productId N8e32c85131f34ad788e8d4986e0fee19
103 Nca6499c73d7640ca84efc035d12ff189
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005035322
105 https://doi.org/10.1007/bf00710891
106 schema:sdDatePublished 2022-09-02T15:47
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N98dd3e99549a4d3a96a37368bbe29a4a
109 schema:url https://doi.org/10.1007/bf00710891
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N321b9c66fe3e464daeb3073427569967 schema:volumeNumber 76
114 rdf:type schema:PublicationVolume
115 N3d1ef39b62d041cbbd1f63e12d129133 rdf:first sg:person.016410121107.52
116 rdf:rest N52be95c36c724230bfd94ff6b263f3ac
117 N52be95c36c724230bfd94ff6b263f3ac rdf:first sg:person.016270664456.75
118 rdf:rest rdf:nil
119 N7d150185b73e4bde8c38a44d4718094d schema:issueNumber 1-2
120 rdf:type schema:PublicationIssue
121 N8e32c85131f34ad788e8d4986e0fee19 schema:name dimensions_id
122 schema:value pub.1005035322
123 rdf:type schema:PropertyValue
124 N98dd3e99549a4d3a96a37368bbe29a4a schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Nca6499c73d7640ca84efc035d12ff189 schema:name doi
127 schema:value 10.1007/bf00710891
128 rdf:type schema:PropertyValue
129 Nec34d3f070cf49e5a2e4ce84e0f4783d rdf:first sg:person.01364752447.13
130 rdf:rest N3d1ef39b62d041cbbd1f63e12d129133
131 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
132 schema:name Earth Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
135 schema:name Atmospheric Sciences
136 rdf:type schema:DefinedTerm
137 sg:journal.1049385 schema:issn 0006-8314
138 1573-1472
139 schema:name Boundary-Layer Meteorology
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.01364752447.13 schema:affiliation grid-institutes:grid.8653.8
143 schema:familyName Holtslag
144 schema:givenName A. A. M.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364752447.13
146 rdf:type schema:Person
147 sg:person.016270664456.75 schema:affiliation grid-institutes:grid.8653.8
148 schema:familyName De Rooy
149 schema:givenName W. C.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016270664456.75
151 rdf:type schema:Person
152 sg:person.016410121107.52 schema:affiliation grid-institutes:grid.8653.8
153 schema:familyName Van Meijgaard
154 schema:givenName E.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016410121107.52
156 rdf:type schema:Person
157 sg:pub.10.1007/bf00117449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010537565
158 https://doi.org/10.1007/bf00117449
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/bf00117468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035169405
161 https://doi.org/10.1007/bf00117468
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/bf00117978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013264681
164 https://doi.org/10.1007/bf00117978
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/bf00121117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019462431
167 https://doi.org/10.1007/bf00121117
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/bf00122760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000170108
170 https://doi.org/10.1007/bf00122760
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/bf00240838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048893766
173 https://doi.org/10.1007/bf00240838
174 rdf:type schema:CreativeWork
175 grid-institutes:grid.8653.8 schema:alternateName Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
176 schema:name Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...